Продолжая обучение основам Apache Hadoop для начинающих администраторов, сегодня рассмотрим архитектуру и принципы работы YARN в кластере. Также разберем, какие отказы могут случиться на каждом из его компонентов и как Resource Manager системы YARN обеспечивает высокую доступность кластера Apache Hadoop. Зачем Apache Hadoop нужен YARN и как он работает Поскольку...
При том, что Apache Hadoop – высоконадежная экосистема хранения и аналитики больших данных, отказы случаются и в ней. Сегодня в рамках обучения начинающих администраторов и разработчиков Hadoop разберем, какие типы сбоев возможны в распределенной файловой системе HDFS и механизмы их предупреждения, а также рассмотрим процедуру вывода узлов из кластера для...
Вчера мы упоминали, что использование Spark или Tez в качестве движка исполнения SQL-запросов в Apache Hive вместо классического Hadoop MapReduce намного ускоряет аналитику больших данных. Сегодня рассмотрим подробнее, чем отличаются эти механизмы и какой из них выбирать в разных случаях использования. Что такое Apache Tez и как он работает с...
Apache Hive – востребованный инструмент класса SQL-on-Hadoop, который также активно используется в работе с фреймворком Spark. Поэтому сегодня разберем важную тему из обучения дата-инженеров и аналитиков больших данных про оптимизацию SQL-запросов в этом NoSQL-хранилище. Смотрите, чем полезна векторизация HiveQL-операций, какие форматы файлов обрабатываются быстрее, почему денормализация данных в Hive –...
Продолжая разбирать особенности разработки потоковых приложений Apache Flink, сегодня рассмотрим проблему падения пропускной способности задания из-за встроенного хранилища состояний RocksDB и ее зависимость от производительности дисков. Вас ждет настоящая детективная история о том, как важно заглядывать под капот облачных кластеров и настраивать конфигурации своих stateful-приложений потоковой аналитики больших данных с...
В этой статье по обучению Apache Spark рассмотрим, чем графический веб-интерфейс этого фреймворка полезен разработчику распределенных приложений. Читайте далее, где посмотреть кэшированные данные, визуализацию DAG, переменные среды, исполняемые SQL-запросы, а также прочие важные метрики кластерных вычислений и аналитики больших данных. 9 страниц Apache Spark UI Apache Spark предоставляет набор пользовательских...
В прошлый раз мы говорили про особенности работы с базовыми CRUD-операциями в Hive. Сегодня поговорим про основные join-операции в распределенной Big Data платформе Apache Hive. Также рассмотрим применение этих операций к данным, хранящимся в этой СУБД. Читайте далее про особенности работы с join-операциями в распределенной СУБД Apache Hive. Join-операции в...
Мы уже рассказывали, что приложения Kafka Streams используют RocksDB в качестве хранилища состояний. Сегодня рассмотрим, как это key-value NoSQL-СУБД используется для разработки stateful-приложений Apache Flink. Читайте далее о преимуществах и особенностях применения RocksDB для управления состоянием Flink-приложения, а также заблуждениях, связанных с этими фреймворками. 3 бэкенда Apache Flink для хранения...
Сегодня рассмотрим пример построения системы потоковой аналитики больших данных на базе Apache Kafka, Spark, Flink, NoSQL-СУБД, BI-системой Tableau или визуализацией в Kibana. Читайте далее, кому и зачем исследовать Twitter-посты в реальном времени, как это реализовать технически, визуализировать в наглядных BI-дэшбордах для принятия data-driven решений и при чем здесь Kappa-архитектура. Еще...
Сегодня рассмотрим преимущества потоковой обработки данных с Apache Kafka и Flink над пакетными Big Data технологиями в виде Hadoop, Spark и Oozie. В качестве примера разберем реальный кейс аналитики больших данных по пользовательским сеансам в музыкальном онлайн-сервисе Spotify, а также возможность замены Apache Flink на Spark Structured Streaming. От рекламы...