PXF, Greenplum и оптимизация SQL-запросов к разным источникам данных

Сегодня продолжим разбираться с интеграционным фреймворком Greenplum и рассмотрим, как PXF реализует SQL-запросы к различным OLAP и OLTP-источникам, поддерживая разные форматы данных. Зачем создавать внешнюю таблицу для Greenplum и какие параметры при этом указывать, а также чем хороша технология оптимизации pushdown. SQL и PXF: интеграция Greenplum с внешними источниками на...

Как устроен PXF Greenplum: архитектура и принципы работы

Специально для дата-инженеров, разработчиков OLAP-конвейеров и архитекторов DWH на MPP-СУБД Greenplum и Arenadata DB сегодня рассмотрим, что представляет собой PXF, из каких компонентов он состоит и как они взаимодействуют друг с другом, чтобы обеспечить параллельный высокопроизводительный доступ к данным и объединенную обработку запросов к разнородным источникам. Что PXF и зачем...

Базовые операции в Hbase: основы Big Data для начинающих

В этой статье мы поговорим про основные базовые операции распределенной СУБД Hbase. Также рассмотрим применение этих операций к данным, хранящимся в этой СУБД на практических примерах. Читайте далее про базовые CRUD-операции в Hbase и их особенности. Основные CRUD-операции в распределенной СУБД Hbase HBase - это распределенная NoSQL столбцово-ориентированная (данные представлены...

Масштабируемая индексация Apache HBase почти в реальном времени: кейс Pinterest

Обучая дата-инженеров и разработчиков распределенных приложений для аналитики больших данных, сегодня рассмотрим кейс компании Pinterest по построению масштабируемого решения для индексации записей в Apache HBase. Чем хранилище Ixia отличается от Lily HBase Indexer, зачем понадобился собственный аналог Solr и ElasticSearch, а также как все это работает в реальном времени с...

Бакетирование vs партиционирование в Apache Hive и Spark

В этой статье рассмотрим 2 способа физической группировки данных для ускорения последующей обработки в Apache Hive и Spark: партиционирование и бакетирование. Чем они отличаются друг от друга, что между ними общего и какой рост производительности дает каждый из методов в зависимости от задач аналитики больших данных средствами Spark SQL. Еще...

Apache Iceberg для Data Lake: что это такое, зачем нужно и как работает

В недавней статье про преимущества хранилища метаданных Apache Hive и другие плюсы этого популярного инструмента SQL-on-Hadoop, мы упоминали формат открытых таблиц Iceberg как альтернативу для хранения огромных наборов аналитических данных. Он добавляет высокопроизводительные SQL-подобные таблицы в вычислительные механизмы Spark, Trino, Presto, Flink и Hive. Сегодня рассмотрим подробнее, что такое Apache Iceberg и...

Что такое индекс и почему его использование так важно при работе в Hive

В прошлый раз мы говорили про драйвер JDBC и его использование в Hive. Сегодня поговорим про особенности создания и работы индекса в распределенной Big Data платформе Apache Hive. Читайте далее про особенности работы с индексами в распределенной среде Big Data СУБД Hive. Какую роль играет использование индекса при обработке Big...

Перспективы Apache Hive: развитие или забвение?

Появившись более 10 лет назад, Apache Hive до сих пор является самым популярным инструментом стека SQL-on-Hadoop и активно используется для аналитики больших данных. Однако, технологии Big Data постоянно развиваются: Spark все чаще заменяет Hadoop MapReduce, а вместо HDFS все чаще используются объектные облачные хранилища: AWS S3, Delta Lake, Apache Ozone...

Еще пара примеров по Apache Hive и Spark: безопасный доступ и реализация SCD

В этой статье для разработчиков распределенных приложений Apache Spark, администраторов SQL-on-Hadoop и дата-аналитиков рассмотрим особенности аутентификации удаленного пользователя, а также отслеживание измененных данных в таблицах Apache Hive. Читайте далее, зачем ограничивать доступ к keytab-файлу в кластерах с поддержкой защищенного протокола Kerberos, а также как реализовать отслеживание медленно меняющихся измерений в...

Что такое группировка и сортировка и какую роль они играют для Impala

В этой статье мы поговорим про функции группировки и сортировки в распределенной СУБД Apache Impala. Читайте далее про особенности работы механизма группировки и сортировки Big Data, которые позволяют Impala-разработчику обрабатывать большие массивы данных любых типов с минимальными временными затратами. Как работает механизм группировки и сортировки данных: особенности обработки Big Data...

Поиск по сайту