Интеграция Elasticsearch с Apache Hadoop: примеры и особенности

В этой статье поговорим про интеграцию ELK-стека с экосистемой Apache Hadoop: зачем это нужно и с помощью каких средств можно организовать обмен данными между HDFS и Elasticsearch, а также при чем здесь Apache Spark, Hive и Storm. Еще рассмотрим несколько практических примеров, где реализована такая интеграция Big Data систем для...

За что все его так любят: ТОП-5 достоинств ClickHouse для Big Data

Сегодня рассмотрим основные преимущества ClickHouse – аналитической СУБД от Яндекса для обработки запросов по структурированным большим данным в реальном времени. Читайте в нашей статье, чем еще хорош Кликхаус, кроме высокой скорости, и почему эту систему так любят аналитики, разработчики и администраторы Big Data. Чем хорош ClickHouse: главные преимущества Напомним, основным...

4 крупных примера внедрения Tarantool, 3 достоинства и 2 главных недостатка IMDB

Сегодня рассмотрим ключевые достоинства и недостатки резидентных СУБД для больших данных на примере Tarantool. Читайте в нашей статье про основные сценарии использования In-Memory Database (IMDB) в области Big Data с конкретными кейсами из реального бизнеса от Альфа-Банка, Аэрофлота, Тинькофф-Банка и Мегафона. Где и как используются In-Memory в Big Data: 4...

Arenadata Grid vs Tarantool для Big Data: сходства и различия отечественных In-Memory СУБД

Вчера мы разбирали In-Memory СУБД на примере Tarantool. Сегодня поговорим про Arenadata Grid: что это такое, чем хороша эта база данных, каким образом она связана с Тарантул и чем от него отличается. Также рассмотрим, как Arenadata Grid интегрируется с внешними Big Data системами, в т.ч. основными компонентами инфраструктуры Apache Hadoop...

Зачем вам Tarantool: разгоняем большие данные с помощью In-Memory database

В этой статье мы рассмотрим резидентные (In-Memory) базы данных на примере Tarantool и Arenadata Grid: что это, как они работают и где используются. Еще поговорим, каким образом эти Big Data системы могут ускорить работу распределенных приложений без замены существующих СУБД, а также при чем здесь промышленный интернет вещей и экосистема...

Big Data, Machine Learning и Internet of Things в складской логистике: 7 FMCG-кейсов

Вчера мы затрагивали тему управления поставками в ритейле с помощью технологий Big Data и Machine Learning. Теперь разберем подробнее, как большие данные, машинное обучение и интернет вещей меняют складскую логистику и насколько это выгодно бизнесу. Сегодня мы собрали для вас 7 практических примеров: кейсы от отечественных и зарубежных транспортных компаний,...

3 главных достоинства и недостатка MPP-СУБД для хранения и аналитики Big Data на примере Greenplum

Сегодня поговорим про достоинства и недостатки массово-параллельной архитектуры для хранения и аналитической обработки больших данных, рассмотрев Greenplum и Arenadata DB. Читайте в нашей статье, что такое MPP-СУБД, где и как это применяется, чем полезны эти Big Data решения и с какими проблемами можно столкнуться при их практическом использовании. Что MPP-СУБД...

Очень быстрая аналитика больших данных: Arenadata QuickMarts и яндексовский ClickHouse

Вчера мы рассказывали про применение Arenadata DB в крупной отечественной сети розничного ритейла. Сегодня рассмотрим еще один Big Data продукт от российской компании Аренадата, который Х5 Retail Group использует для быстрой аналитики больших данных. Читайте в нашей статье, что такое Arenadata QuickMarts и при чем здесь ClickHouse от Яндекса. Что...

Еще больше данных для торговой аналитики: Arenadata в Х5 Retail Group

Продолжая разговор про успехи применения отечественных Big Data продуктов, сегодня мы рассмотрим пример использования Arenadata DB в одной из ведущих отечественных компаний розничного ритейла. Читайте в нашей статье про особенности внедрения распределенной отказоустойчивой MPP-СУБД для аналитики больших данных в Х5 Retail Group. Зачем ритейлеру еще одно Big Data решение: специфика...

Завод, телеком и госсектор: 3 примера внедрения Arenadata

В этой статье мы продолжим рассказывать про практическое использование отечественных Big Data решений на примере российского дистрибутива Arenadata Hadoop (ADH) и массивно-параллельной СУБД для хранения и анализа больших данных Arenadata DB (ADB). Сегодня мы приготовили для вас еще 3 интересных кейса применения этих решений в проектах цифровизации бизнеса и государственном...

От банков до Газпрома: 4 крупных успеха Arenadata – интересные кейсы за последнюю пару лет

Сегодня мы поговорим про продукты компании Arenadata – отечественного разработчика дистрибутива Apache Hadoop (ADH), массивно-параллельной СУБД для хранения и анализа больших данных Arenadata DB (ADB) и других Big Data платформ. Читайте в нашей статье, где внедрены эти решения и какую пользу они уже успели принести бизнесу. Облака и банк: 3...

5 достоинств и 2 недостатка Data Vault для КХД и архитектора Big Data

В этой статье мы рассмотрим основные плюсы и минусы Data Vault – популярного подхода к моделированию сущностей при проектировании корпоративных хранилищ данных (КХД). Читайте сегодня, почему промежуточные базы перед витринами данных упрощают ETL-процессы, за счет чего обеспечивается отсутствие избыточности и как много таблиц могут усложнить жизнь архитектора Big Data. Чем...

ETL по Data Vault: решаем проблемы загрузки данных в КХД с помощью Big Data

Продолжая разговор про проектирование корпоративных хранилищ данных с использованием подхода Data Vault, сегодня мы рассмотрим, как эта модель влияет на дизайн ETL-процессов и их реализацию. Читайте в нашей статье про загрузку данных в КХД по модели Data Vault и проблемы, которые могут при этом возникнуть, а также способы их решения...

Что такое Data Vault: моделирование КХД для архитектора Big Data

Вчера мы рассмотрели, что такое Data Vault, почему возникла эта модель и чем она полезна при проектировании архитектуры корпоративных хранилищ данных (КХД) и озер данных (Data Lake). Сегодня разберем ключевые понятия Data Vault и поговорим про возможности Data Vault 2.0 для области больших данных (Big Data). Ключевые понятия Data Vault...

Как спроектировать КХД: 4 метода моделирования данных для архитектора Big Data

Сегодня мы поговорим о проектировании архитектуры корпоративных хранилищ данных (КХД) и рассмотрим, какие методы и инструменты используются для моделирования структуры DWH и динамики ETL-процессов. В этой статье про основы Data Modelling разберем, что такое OLAP и OLTP, почему 3-я нормальная форма стала стандартом в SQL-СУБД, чем схемы звезды отличается от...

Современное КХД в облаках: гибриды, лямбда, MPP и прочая Big Data

В продолжение темы про корпоративные хранилища данных, сегодня мы рассмотрим облачные варианты Data Warehouse с учетом тренда на расширенную аналитику Big Data на базе машинного обучения. Читайте в нашей статье про синергию классической LSA-архитектуры локального КХД с Лямбда-подходом, MPP-СУБД, а также Apache Hadoop, Spark, Hive и другими технологиями больших данных....

Не Hadoop’ом единым: что такое КХД и как его связать с Big Data

В этой статье мы расскажем, что такое корпоративное хранилище данных, зачем оно нужно и как устроено. Еще рассмотрим основные достоинства и недостатки Data Warehouse, а также чем оно отличается от озера данных (Data Lake) и как традиционная архитектура КХД может использоваться при работе с большими данными (Big Data). Где хранить...

Data lineage и provenance: близнецы или двойняшки – Big Data Management для начинающих

В этой статье мы продолжим разговор про основы управления данными и рассмотрим, что такое data provenance и data lineage, чем похожи и чем отличаются эти понятия. Также разберем, почему эти термины особенно важны для Big Data, какие инструменты помогают работать с ними, а также при чем здесь GDPR. Что такое...

Управление НСИ в эпоху Big Data: какой MDM нужен современному бизнесу

Управление данными не сводится к выделению роли дата стюарда и обеспечению Data Quality.  Сегодня мы расскажем, что такое мастер-данные, как искусственный интеллект помогает решать проблемы управления НСИ и почему эффективный Master Data Management (MDM) особенно важен в мире Big Data. Что такое мастер-данные или зачем управлять НСИ Начнем с определения:...

Что такое Каппа-архитектура: альтернатива Лямбда для потоков Big Data

Вчера мы рассказали, что такое лямбда-архитектура. Сегодня рассмотрим Каппа - альтернативный подход к проектированию Big Data систем. Читайте в нашей статье, зачем нужна эта концепция, каковы ее достоинства и недостатки, чем Каппа отличается от Лямбда, где это используется на практике и при чем тут Apache Kafka с Machine Learning. Зачем...