Автосоздание CLI в Apache Airflow с Python Fire вместо Python-оператора

Почему следует избегать PythonOperator в конвейере обработки пакетных данных на Apache Airflow и что использовать вместо этого оператора для описания задач DAG. Когда лаконичный CLI лучше наглядного GUI, где и как применять библиотеку Python Fire для оркестрации, а также планирования запуска batch-заданий. Зачем нам CLI или что не так с PythonOperator...

Istio для Apache Airflow в Kubernetes: проблемы и решения

Запуск Apache Airflow с Kubernetes сегодня стал стандартом де-факто. Однако, при практическом развертывании Airflow с помощью исполнителя Kubernetes и оператора пода в кластере этой платформы оркестрации контейнерных приложений возникает множество препятствий и трудностей. Сегодня рассмотрим, как обойти их с помощью service-mesh проекта с открытым исходным кодом Istio, какие проблемы могут при...

MLOps и переносимость ML-моделей с помощью ONNX и Apache Spark

Обучая специалистов по Data Science, аналитиков и инженеров данных лучшим практикам MLOps, сегодня поговорим про переносимость моделей машинного обучения между разными этапами жизненного цикла ML-систем, от разработки до развертывания в production. А в качестве примера разберем, как использовать обученную ML-модель из Apache Spark за пределами кластера, упаковав ее в ONNX...

Я за тобой слежу: настраиваем мониторинг Spark-приложений в кластере Kubernetes

Как организовать удобный мониторинг за приложениями Apache Spark в кластере Kubernetes с помощью Prometheus и Grafana: пошаговый guide для администраторов и дата-инженеров с примерами. Создаем свою альтернативу наглядным дэшбордам AWS EMR с Java-библиотекой Dropwizard Metrics и средством настройки оповещений Alertmanager. Не только AWS EMR или как следить за Spark-приложениями в...

MLOps на AirFlow, MLFlow и сервисах AWS с экономией на облачном кластере за счет Spark 3

В рамках обучения дата-инженеров и ML-специалистов лучшим практикам MLOps, сегодня рассмотрим практический пример построения конвейера машинного обучения на Airflow, MLFlow, SageMaker и других сервисах Amazon. А также как Apache Spark версии 3 сократил расходы на облачный EMR-кластер почти в 2 раза. MLOps с AirFlow и MLFlow в облаке AWS Ранее...

MLOps на практике: опыт Glassdoor

Практическая реализация MLOps-концепции на примере международной рекрутинговой компании Glassdoor. Как построить самоуправляемую автоматизированную систему разработки и сопровождения ML-моделей с MLFlow, Apache Spark и AirFlow, Kubernetes, GitLab, SageMaker Feature Store, Whylogs, Jenkins, Spinnaker и Prometheus с Grafana. Предыстория: зачем MLOps в Glassdoor Glassdoor с 2008 года помогает соискателям по всему миру...

Легковесный Apache NiFi для IoT: Docker-образ MiNiFi на Raspberry PI4 ARM64

Сегодня поговорим про совместное использование Apache NiFi с его легковесным агентом – MiNiFi. Преимущества для ETL-процессов в IoT-системах и не только, ограничения практического применения, а также пример контейнеризации и выполнения Docker-образа на Raspberry PI4 ARM64. Internet of Things и Apache NiFi на периферии Интернет вещей (Internet of Things, IoT) приводит...

Бессерверный парсинг веб-сайтов на Apache NiFi и OpenFaaS с Selenium

Сегодня разберемся с serverless-технологиями и рассмотрим, как самостоятельно создать и интегрировать бессерверный парсер Selenium с Apache Nifi. Краткий ликбез по OpenFaaS, Selenium и Chromium, а также преимущества serverless-технологий и пример вызова функции сбора данных с веб-страницы на Python. Введение: serverless, OpenFaaS и Selenium с Chromium Serverless-стратегия организации платформенных облачных услуг,...

Apache Kafka на Kubernetes vs KubeMQ

Недавно мы рассказывали про KubeMQ – stateless-сервис обмена сообщениями для Kubernetes, который может заменить собой сложное развертывание Apache Kafka на этой платформе управления контейнерами. Сегодня разберем, как устроен KubeMQ и сравним его с Apache Kafka по нескольким параметрам, наиболее интересным для разработчиков распределенных приложений и администраторов. Операторы и пользовательские ресурсы...

Управление жизненным циклом конвейеров Apache Airflow: советы дата-инженеров Databand

Развивая наши курсы для дата-инженеров по Apache AirFlow, сегодня рассмотрим, как автоматизировать развертывание сложных DAG’ов с помощью Docker и Kubernetes на примере управления конвейерами обработки данных. Лучшие практики и советы от инженеров данных DataOps-компании Databand. 4 вопроса дата-инженера к production-развертыванию конвейеров Apache Airflow Apache AirFlow считается одним из самых популярных...

Поиск по сайту