MLOps для устранения техдолга в проектах Machine Learning

Почему в проектах машинного обучения накапливается технический долг, каковы главные факторы его появления и каким образом MLOps устраняет проблемы, связанные с разработкой, тестированием, развертыванием и сопровождением систем Machine Learning. Скрытый технический долг в ML-системах Технический долг означает дополнительные затраты, возникающие в долгосрочной перспективе, с которыми сталкивается команда, в результате выбора...

5 популярных языков запросов к графам

Для продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях, сегодня рассмотрим 5 самых известных языков запросов для управления данными графов. Что общего у GraphQL, Gremlin, Cypher, SPARQL и AOL, а также чем они отличаются. GraphQL Языки запросов, используемые для управления данными графов (GQL, Graph Query Language), определяют способ извлечения...

TensorFlow на Apache Hadoop с TonY

Как LinkedIn построила масштабируемую инфраструктуру конвейеров машинного обучения, развернув модели TensorFlow на Apache Kafka, Spark и Hadoop YARN. Что такое платформа TonY, как она работает, почему изначально вычислительная парадигма MapReduce не очень хорошо подходила для глубокого обучения и как это исправить через конфигурацию настроек YARN. MLOps и проблемы глубокого обучения...

Зачем вам RawGraphs: визуализация данных в Data Science

В рамках продвижения наших курсов по машинному обучению и Data Science, сегодня познакомимся с полезным инструментом визуализации данных. Что такое RawGraphs, как он работает и чем полезен для аналитики больших данных: смотрим на практическом примере. Что такое RawGraphs и как это работает Специалисты по Data Science и аналитики данных часто...

MLOps c Kubeflow: компоненты ML-конвейера

Помимо популярного MLflow от Databrics, специалисты по машинному обучению часто используют другой MLOps-инструмент – Kubeflow, о чем мы писали здесь. Сегодня разберем, как работает это средство, упрощающее разработку и развертывание конвейеров Machine Learning на платформе контейнерной виртуализации Kubernetes. Что такое конвейеры Kubeflow и как они работают Как мы уже отмечали,...

MLOps c LakeFS и MLflow: версионирование данных

Управление версиями датасетов для ML-моделей, а также версионирование самих алгоритмов машинного обучения является одной из важных задач MLOps-концепции непрерывной разработки и развертывания систем Machine Learning. Читайте, как реализовать это с помощью платформы LakeFS и фреймворка MLflow. Что такое LakeFS и при чем здесь MLOps Системы контроля версий, такие как Git,...

Практический NLP с Python-библиотекой spaCy для SEO-задач в Google Colab

В рамках продвижения наших курсов по Data Science и Machine Learning, сегодня познакомимся с Python-библиотекой spaCy и русскоязычной NLP-моделью, развернув их в интерактивной среде Google Colab. В качестве практического примера решим небольшую SEO-задачу: определим части речи для каждого слова в небольшом тексте и количество их повторений. Применение библиотеки spaCy на...

Глубокое машинное обучение, реляционная парадигма и логическое программирование: versus или вместе?

Сегодня рассмотрим, чем отличаются подходы к представлению данных в глубоком машинном обучении и реляционной логике, как это связано с декларативной парадигмой логического программирования и при чем здесь графы. А в качестве примера реализации этих идей рассмотрим комбинацию принципов Deep Learning с реляционной логикой и GNN-нейросетями в Python-библиотеке PyNeuraLogic. Машинное обучение...

Потоковое машинное обучение с Python-библиотекой River

Сегодня поговорим про Python-библиотеку River, которая позволяет быстро и дешево обновлять модели машинного обучения в производственной среде в режиме реального времени. Чем потоковые ML-конвейеры отличаются от пакетных и с какими сложностями при их реализации может столкнуться Data Scientist. Что такое потоковое машинное обучение Data Scientist’ы обычно используют пакетное обучение для...

Разработка мультимодальных ML-моделей с TorchMultimodal

В марте 2022 года в Github появился исходный код TorchMultimodal – PyTorch-библиотеки для обучения масштабных мультимодальных многозадачных ML-моделей. А 17 ноября вышел бета-релиз этой библиотеки, который содержит множество полезных примеров и лучших архитектур глубокого обучения. Разбираемся с этой новой библиотекой. Что такое мультимодальные ML-модели и при чем здесь TorchMultimodal Человек...

MLOps c BentoML, MLflow и Kubeflow: автоматическое развертывание ML-модели

Чтобы сделать наши курсы для DevOps-инженеров и специалистов по Machine Learning еще более полезными, сегодня рассмотрим, как автоматизировать развертывание и обслуживание ML-моделей согласно концепции MLOps с помощью GitLab CI/CD, BentoML, Yatai, MLflow и Kubeflow. BentoML для CI в MLOPS При развертывании ML-модели необходимо учитывать следующие аспекты: как была построена модель...

Трудности выбора в MLOps: оркестрация ML-конвейеров с Vertex AI Pipelines и Apache AirFlow

Мы уже сравнивали MLflow и Kubeflow, которые позволяют управлять конвейерами машинного обучения. Продолжая эту важную для ML-инженера тему, сегодня рассмотрим 2 других MLOps-инструмента для оркестрации конвейеров Machine Learning: Vertex AI Pipelines и Apache AirFlow. Что такое Vertex AI Pipelines от Google Поскольку цель концепции MLOps в том, чтобы объединить разработку...

Что такое Py2neo: Python вместо Cypher в приложениях с Neo4j

В рамках продвижения нашего нового курса по графовой для аналитики больших данных аналитике больших данных, сегодня познакомимся с клиентской Python-библиотекой Neo4j под названием Py2neo, которая позволяет отказаться от языка запросов Cypher. Читайте далее, что это такое, как работает и где пригодится. Python вместо Cypher в приложениях для Neo4j Манипуляции с...

Асинхронное программирование в ML-системах

Поскольку концепция MLOps стремится устранить разрывы между разработкой ML-модели и ее имплементацией в эффективный программный код, сегодня поговорим про важную идею программирования, связанную с синхронностью и асинхронностью вызовов. Что такое асинхронное программирования, зачем это нужно в Machine Learning и какие Python-библиотеки поддерживают это. Проблемы синхронных вызовов в ML-системах В реальных...

Почему глубокому обучению не обойтись без MLOps

Сегодня разберем, что такое глубокое обучение и почему MLOps очень важен для этих методов Machine Learning. В чем особенности обучающих данных для моделей Deep Learning и зачем дополнять типовые MLOps-инструменты собственными разработками, избегая вредных антипаттернов. Машинное обучение vs Deep Learning: разница для MLOps Создание ML-систем сводится не только к разработке...

Как использовать цепи Маркова для анализа моделей рекламной атрибуции

Недавно мы писали, что такое цепь Маркова, как это используется в практических приложениях Data Science и с помощью каких инструментов реализуется этот граф состояний. В продолжение этой полезной для обучения дата-аналитиков темы посмотрим на модели маркетинговой атрибуции как на марковские цепи и разберем пользу этого представления. Практический пример в Google...

Построение MLOps-платформы с открытыми инструментами

Сегодня рассмотрим, как реализовать полноценный MLOps-цикл, используя свободные инструменты с открытым исходным кодом: MLflow, Kubeflow, Seldon, Streamlit, AirFlow, Git, Prometheus и Grafana. Процессы жизненного цикла ML-систем Концепция MLOps использует проверенные методы DevOps для автоматизации создания, развертывания и мониторинга конвейеров машинного обучения в производственной среде, устраняя рост технического долга в ML-проектах....

Марковские цепи для анализа данных и NLP: теория и практика

В этой статье для обучения аналитиков данных и специалистов по Data Science рассмотрим, что такое цепь Маркова, где это используется в практических приложениях и с помощью каких инструментов можно реализовать этот граф состояний. В качестве примера рассмотрим генерацию фраз из небольшого текста с помощью методов библиотеки markovify в интерактивном блокноте...

Ад зависимостей для Python-разработчика: 4 библиотеки для визуализации графа

Практически каждый Python-разработчик и Data Scientist использует в своем коде сторонние библиотеки и внешние решения, которые хранятся в разных репозиториях и связаны со множеством других файлов. Этот открытый код настолько распределен, что возникает «ад зависимостей», что сильно осложняет разработку. Читайте, как справиться с этой проблемой, используя методы анализа графов. Проблема...

Мониторинг Machine Learning в production: полезные советы и MLOps-инструменты

Специально для обучения ML-разработчиков сегодня разберем проблемы развертывания моделей Machine Learning в производстве и способы их решения с помощью MLOps-инструментов. А также поговорим про дрейф данных и его обнаружение методами математической статистики. Жизненный цикл ML-моделей и MLOps Каждый проект машинного обучения начинается с данных, подготовка которых занимает большую часть жизненного...