Чем хорош Splunk S2S Source Connector от Confluent и как это связано с Apache Kafka

В этой статье для дата-инженеров и администраторов Apache Kafka рассмотрим, зачем Confluent выпустил премиум коннектор Splunk S2S Source и как на базе этих платформ построить эффективную систему потоковой аналитики больших данных. Также читайте далее, что такое универсальный сервер рассылки Splunk и какие конфигурации коннектора позволяют автоматически создавать топик Kafka для сбора...

Что такое Erasure Coding и как это устроено: под капотом Apache Hadoop HDFS 3.3.1

Недавно мы рассказывали про новые функции свежего релиза Apache Hadoop 3.3.1. Сегодня разберем подробнее, что такое Erasure Coding и как эта технология кодирования со стиранием экономит место в распределенной файловой системе HDFS. Также заглянем внутрь EC и рассмотрим, чем алгоритм Рида-Соломона лучше ассоциативной операции XOR для обеспечения отказоустойчивости хранилища больших...

Зачем вам Beekeeper или как очистить метаданные таблицы Apache Hive

Сегодня рассмотрим, что такое Beekeeper и как этот сервис помогает администраторам Hadoop и пользователям Apache Hive очищать метаданные этого NoSQL-хранилища. Читайте далее, зачем удалять устаревшие пути из Metastore и как настроить конфигурацию Hive-таблиц для автоматического прослушивания событий их изменения. Для чего очищать потерянные метаданные в Apache Hive Напомним, Apache Hive...

Greenplum vs PostgreSQL: 7 сходств и 3 отличия

Поскольку Greenplum и Arenadata DB основаны на популярной open-source СУБД PostgreSQL, сегодня разберем, чем они отличаются от этой объектно-реляционной базы данных. Далее вас ждет краткий и понятный ответ на вопрос Greenplum vs PostgreSQL: сходства и отличия этих систем с учетом аналитики больших данных и практических кейсов дата-инженерии. Что общего между...

5 лайфхаков по Apache Spark для разработчиков и дата-аналитиков

Специально для разработчиков распределенных приложений, Data Scientist’ов и аналитиков больших данных, работающих с Apache Spark, в этой статье мы собрали несколько полезных советов по ежедневным операциям в этом фреймворке. Читайте далее, как добавить библиотеку TypeSafe в файл sbt-конфигурации Spark-приложения, получить датафреймы из JSON-массивов и структур, а также обработать CSV-формат с...

Как устроен API администратора Apache Kafka: методы AdminClient с примерами

В рамках курсов по Apache Kafka для разработчиков и администраторов кластера, сегодня заглянем под капот AdminClient и на практических примерах разберем, как динамически создавать новый топик и описывать его программным способом через API. Еще рассмотрим, почему метод deleteTopics() нужно применять очень осторожно, а также вспомним основы ООП, говоря про классы...

Как GPORCA ускоряет аналитику больших данных в Greenplum: оптимизация SQL-запросов с JOIN и немного математики

Обучая разработчиков и администраторов Greenplum, а также в рамках продвижения курсов по Arenadata DB, сегодня рассмотрим, как SQL-оптимизатор ORCA ускоряет аналитику больших данных, позволяя реализовать многостороннее соединение таблиц через JOIN-запросы. Читайте далее, что такое GPORCA, как его использовать, насколько он эффективен по сравнению с другими планировщиками SQL-запросов в этой MPP-СУБД...

Как создать микросервисный ML-конвейер в реальном времени на Apache Kafka и Spark

Чтобы дополнить наши курсы по Kafka и Spark интересными примерами, сегодня рассмотрим практический кейс разработки микросервисного конвейера машинного обучения на этих фреймворках. Читайте далее, зачем выносить ML-компонент в отдельное Python-приложение от остальной части Big Data pipeline’а, и как Docker поддерживает эту концепцию микросервисного подхода. Постановка задачи и компоненты микросервисного ML-конвейера...

Зачем Apache Hive внешняя база данных для MetaStore: смотрим на примере Arenadata Hadoop 2.1.4 со Spark 3

В июле 2021 года «Аренадата Софтвер», российская ИТ-компания разработчик отечественных решений для хранения и аналитики больших данных, представила минорный релиз корпоративного дистрибутива на базе Apache Hadoop — Arenadata Hadoop 2.1.4. Главными фишками этого выпуска стало наличие 3-й версии Apache Spark и External PostgreSQL для Hive MetaStore. Сегодня рассмотрим, что именно...

Непредсказуемость Apache Spark SQL и как от нее избавиться: про UDF и Catalyst

Сегодня в рамках обучения разработчиков Apache Spark и дата-аналитиков, поговорим про детерминированность UDF-функций и особенности их обработки оптимизатором SQL-запросов Catalyst. На практических примерах рассмотрим, как оптимизатор Spark SQL обрабатывает недетерминированные выражения и зачем кэшировать промежуточные результаты, чтобы гарантированно получить корректный выход.   Еще раз про детерминированность функций и планы выполнения...

Новый релиз Apache Hadoop 3.3.1: ТОП-15 обновлений

Постоянно обновляя наши курсы по Apache Hadoop для администраторов кластеров и инженеров данных, сегодня рассмотрим главные новинки июньского релиза 2021. Читайте далее, как поддержка Erasure Coding сэкономит место в HDFS, зачем обновляться до 8-ой версии Java, чем хорош YARN Timeline Service v.2, как повысить надежность кластера Hadoop еще больше и...

Под капотом кластера Apache Hadoop: как работает YARN, где он может сломаться и что чинить

Продолжая обучение основам Apache Hadoop для начинающих администраторов, сегодня рассмотрим архитектуру и принципы работы YARN в кластере. Также разберем, какие отказы могут случиться на каждом из его компонентов и как Resource Manager системы YARN обеспечивает высокую доступность кластера Apache Hadoop. Зачем Apache Hadoop нужен YARN и как он работает Поскольку...

ksqlDB 0.19.0: июньские новинки для разработчиков Kafka от Confluent

6 июня 2021 года компания Confluent, которая продвигает коммерческую версию платформы Apache Kafka, выпустила новый релиз ksqlDB. Сегодня рассмотрим самые важные исправления ошибок и новые функции ksqlDB 0.19.0, уделив особое внимание SQL-запросам соединения таблиц через JOIN по внешнему ключу. ТОП-10 исправленных ошибок в новом релизе ksqlDB Напомним, ksqlDB – это...

ADB-Spark Connector: интеграция Spark и Greenplum от Аренадата

Мы уже рассказывали про коннектор Greenplum-Spark, 2-я версия которого вышла в октябре 2020 года. А сегодня рассмотрим российскую альтернативу для отечественной MPP-СУБД Arenadata DB на базе Greenplum, выпущенную компанией Аренадата в июле 2021 года. Краткий обзор ADB-Spark Connector: архитектура, принципы работы, сценарии использования, а также отличия от PXF-фреймворка и варианта...

Основы Hadoop HDFS для начинающих администраторов: как вывести узел из кластера без потери данных

При том, что Apache Hadoop – высоконадежная экосистема хранения и аналитики больших данных, отказы случаются и в ней. Сегодня в рамках обучения начинающих администраторов и разработчиков Hadoop разберем, какие типы сбоев возможны в распределенной файловой системе HDFS и механизмы их предупреждения, а также рассмотрим процедуру вывода узлов из кластера для...

100% SLA в Apache Kafka: AVRO, заголовки и повторные попытки обработки данных

Продолжая разбирать тонкости сериализации данных в Apache Kafka на практических примерах, сегодня рассмотрим кейс индийской ИТ-компании Naukri Engineering о повторной обработке сообщений и особенностях форматов. Читайте далее, чем хороши заголовки Kafka и почему их не так просто использовать, а также зачем писать свой сериализатор с десериализатором для достижения 100%-ного SLA....

Tez vs Spark: что выбрать для Apache Hive

Вчера мы упоминали, что использование Spark или Tez в качестве движка исполнения SQL-запросов в Apache Hive вместо классического Hadoop MapReduce намного ускоряет аналитику больших данных. Сегодня рассмотрим подробнее, чем отличаются эти механизмы и какой из них выбирать в разных случаях использования. Что такое Apache Tez и как он работает с...

Как ускорить SQL-запросы в Apache Hive: ТОП-5 методов оптимизации

Apache Hive – востребованный инструмент класса SQL-on-Hadoop, который также активно используется в работе с фреймворком Spark. Поэтому сегодня разберем важную тему из обучения дата-инженеров и аналитиков больших данных про оптимизацию SQL-запросов в этом NoSQL-хранилище. Смотрите, чем полезна векторизация HiveQL-операций, какие форматы файлов обрабатываются быстрее, почему денормализация данных в Hive –...

5 вопросов про масштабирование Spark-приложений

Чтобы добавить в наши курсы по Spark еще больше практических кейсов, сегодня ответим на самые частые вопросы относительно масштабирования распределенных приложений, написанных с помощью этого фреймворка. Читайте далее о пользе динамического распределения, оптимальном выделении ресурсов на драйверы и исполнители, а также каковы тонкости управления разделами в Apache Spark. Лебедь, рак...

Еще больше потоковой аналитики Big Data с Kafka Streams: обработка больших сообщений

Сегодня рассмотрим проблему обработки больших сообщений в Apache Kafka Streams и способы ее решения с помощью средства сериализации и десериализации (SerDe) от немецкой ИТ-компании Bakdata. Узнайте, почему максимального лимита конфигурации max.message.bytes не хватает, зачем и как приложение Kafka Streams материализует данные, а также каким образом kafka-s3-backed-serde читает и записывает большие...