Настройка кластера Apache Spark и Hive на Hadoop

Как настроить Apache Spark 3.0.1 и Hive 3.1.2 на Hadoop 3.3.0: тонкости установки и конфигурирования для обучения администраторов кластера и инженеров с примерами команд и кода распределенных приложений. Запуск Spark-приложения на Hadoop-кластере Прежде всего, для настройки кластера Apache Spark нужен работающий кластер Hadoop. Сама установка и настройка выполняется в 2...

MLOps на Python и не только: кейс банка «Открытие»

Чтобы сделать наши курсы для специалистов в области Data Science и ML-инженеров еще более полезными, сегодня рассмотрим, как организовать сквозной CI/CD-конвейер разработки и развертывания системы машинного обучения в соответствии с MLOps-концепцией на 4-х популярных Python-инструментах: MLflow, DVC, Airflow, ClearML. А в качестве примера практической реализации этой идеи разберем кейс банка...

Закладки и причинно-следственная согласованность чтения данных в кластере Neo4j

В рамках продвижения нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим проблемы неконстистентности чтения из графовой СУБД Neo4j и способы их решения. Что такое bookmarks-механизм, как работает объект сеанса в Neo4j в кластерном режиме и при чем здесь драйверы. Зачем нужны закладки в Neo4j Драйверы графовой...

Диски и потоки в Apache NiFi: ищем компромисс

Мы уже писали про главные недостатки Apache NiFi как инструмента потоковой маршрутизации данных и организации ETL-процессов. Одним из них считается высокое потребление дискового пространства. Почему это случается и как с этим бороться: тонкости работы с потоковыми файлами на уровне жесткого диска -  процессоры, очереди, сохранение и  изменения FlowFile в Apache...

Интеграционное тестирование Kafka-приложений: 4 полезных библиотеки

Продолжая важную для обучения разработчиков распределенных приложений и дата-инженеров тему про тестирование Big Data систем на базе Apache Kafka, сегодня рассмотрим некоторые средства для создания интеграционных тестов. Краткий ликбез по интеграционному тестированию приложений Apache Kafka В отличие от модульного тестирования, которое мы разбирали ранее, интеграционное тестирование сосредоточено на интерфейсах и потоке...

Тонкости SparkSession в Apache Spark Structured Streaming

Может ли быть несколько сеансов в одном Spark-приложении с разной конфигурацией, зачем нужен метод foreachBatch() в структурированной потоковой передаче и чем он отличается от foreach(), почему возникает ошибка Table or view not found: microBatch и как ее обойти. В рамках обучения разработчиков Apache Spark и дата-инженеров заглядываем под капот этого...

2 подхода к динамической фильтрации потоковых данных в Apache Flink

Как изменять правила фильтрации данных без перезапуска потокового Flink-приложения: практический пример для разработчиков и дата-инженеров. Чем подход с ключами состояний отличается от широковещательных соединений, каковы достоинства и недостатки этих альтернатив. Фильтрация данных в статике и динамике Практически каждая платформа потоковой передачи событий позволяет использовать фильтрацию операторов для отбора данных согласно...

NLP в Neo4j с Cypher: простой пример

Недавно мы писали про рекомендательную систему американской медиа-компании Meredith Corporation на основе графовой СУБД Neo4j и алгоритма непересекающихся множеств (Union-Find). Продолжая эту тему в рамках нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим, как построить простой рекомендательный движок с помощью выражений и операторов языка запросов Cypher...

Модульное тестирование Kafka-приложений

Чтобы сделать наши курсы по Apache Kafka еще полезнее, сегодня разберем, как тестировать распределенные приложения на базе этой платформы потоковой обработки событий. Краткий ликбез для разработчика Kafka Streams и дата-инженера: классы, методы и приемы модульных тестов с примерами. Ликбез по модульному тестированию: что такое mock-объекты Про виды тестирования мы уже...

Как связать Greenplum и Hadoop: интеграция c PXF

В этой статье для дата-инженеров и администраторов кластера рассмотрим, как считать данные из распределенной файловой системы Apache Hadoop в MPP-СУБД Greenplum. Архитектура и принцип работы PXF-коннектора к HDFS с примерами команд. Интеграция Greenplum и Hadoop через PXF-коннекторы Мы уже писали, что представляет собой интеграционный фреймворк PXF (Platform Extension Framework), который...

От Derby к Hive: хранилище метаданных для Apache Spark

Сегодня заглянем под капот Apache Spark и разберем, для чего этому популярному вычислительному движку база метаданных, как ее назначить и что не так с хранилищем данных по умолчанию. Зачем уходить от Apache Derby к Hive и как это сделать: краткий ликбез с примерами для обучения дата-инженеров и разработчиков распределенных приложений....

Бессерверный Apache Spark в Google Dataproc

Недавно в Google Dataproc появился бессерверный Apache Spark. Разбираемся, что это такое и зачем нужно дата-инженерам. Как работает serverless Spark в облачной платформе Google и почему выбирать между Dataflow и Dataproc стало еще сложнее. Блеск и нищета Google Dataproc Напомним, Google Dataproc – это облачный Hadoop, который работает аналогично другим...

Как реестр схем помогает снизить нагрузку на запись сообщений в топики Apache Kafka

Мы уже рассказывали, что такое реестр схема Apache Kafka и зачем он нужен. Чтобы глубже разобраться с этой темой, важной для обучения разработчиков распределенных приложений и дата-инженеров, сегодня заглянем под капот Schema Registry и разберем работу этого компонента платформы Confluent Apache Kafka с продюсерами и потребителями. Еще раз про реестр...

Arenadata Postgres: краткий обзор отечественного enterprise-дистрибутива

Продолжая разговор про импортозамещение, сегодня рассмотрим новый продукт от «Аренадата Софтвер» - разработчика широкой линейки российских решений для хранения и аналитики больших данных. Компания адаптирует открытые дистрибутивы Big Data фреймворков к специфике корпоративного использования и предоставляет русскоязычную поддержку 24/7. Что такое Arenadata Postgres, кому и зачем нужен этот продукт, и...

Как улучшить рекомендательную систему с Neo4j: кейс Meredith

Развивая наш новый курс по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим американского медиаконгломерат Meredith Corporation по персонализации пользовательских профилей с помощью графовой СУБД Neo4j и алгоритма непересекающихся множеств (Union-Find). Постановка задачи: сложности идентификации анонимных клиентов Различными контент-продуктами конгломерата Meredith Corporation ежемесячно пользуется более 180 миллионов человек через приложения,...

Вместо Tableau и Power BI: DataLens от Яндекса на примере внедрения в KazanExpress

Недавно мы писали про Yandex Managed Service for Apache Kafka. Продолжая тему импортозамещения, сегодня рассмотрим, как этот и другие полностью управляемые сервисы Яндекса помогли отечественному маркетплейсу KazanExpress построить эффективное BI-решение. Что такое Yandex DataLens и как он способен заменить зарубежные системы бизнес-аналитики типа Tableau с Power BI, а также открытый Apache...

Широковещательное соединение в Apache Spark SQL: ликбез и примеры

В этой статье для дата-инженеров и аналитиков данных, рассмотрим, что такое широковещательные соединение в Apache Spark SQL, чем оно полезно и как работает на практических примерах. BROADCAST JOIN в SELECT-запросах Spark SQL, а также краткий ликбез по подсказкам или хинтам. Что такое широковещательное соединение в Apache Spark SQL Распределенная природа...

Apache Kafka в облаках: краткий обзор управляемых сервисов

В свете импортозамещения сегодня рассмотрим российские альтернативы облачных управляемых сервисов для развертывания Apache Kafka. Сравнение отечественных Yandex Managed Service for Apache Kafka и VK Cloud Solutions Big Data с зарубежным Confluent Cloud. Облачная Apache Kafka от Confluent и не только Пожалуй, самым популярным облачным сервисом Apache Kafka во всем мире...

Ускорение PySpark-приложений с PyArrow: лайфхаки Apache Spark для разработчиков

В рамках обучения разработчиков Spark-приложений и дата-инженеров, сегодня рассмотрим, как повысить эффективность выполнения Python-кода с помощью кросс-языковой платформы Apache Arrow. Что такое PyArrow и как это улучшает производительность PySpark-программ. Почему Spark Java быстрее PySpark и как это исправить с Apache Arrow Будучи популярным вычислительным движком в области Big Data, Apache...

Greenplum 6.20: что нового?

15 марта 2022 года вышло очередное обновление MPP-СУБД VMware Tanzu Greenplum, в основе которой лежит одноименный open-source проект. Читайте далее, какие новые фичи добавлены в выпуск 6.20 и что за проблемы устранены в этом минорном релизе. Самое главное: краткий обзор новых фич Greenplum 6.20 Greenplum 6.20.0 включает следующие новые и...