Как быстро и безопасно удалять брокеры из кластера Kafka: решение от Confluent

Сегодня рассмотрим важную для обучения администраторов кластера Apache Kafka тему про удаление брокеров. Что происходит, когда администратор удаляет брокер Kafka из кластера, какие сложности при этом могут возникнуть и как с ними справляется решение на базе платформы Confluent. Как вручную удалить брокер Kafka из кластера: краткий guide администратора На первый...

Оконные функции PySpark в Google Colab: пара примеров

Специально для обучения начинающих аналитиков данных и дата-инженеров сегодня рассмотрим примеры выполнения простых SQL-запросов и оконных функций в Apache Spark на Google Colab. Как быстро проанализировать датафрейм из CSV-файлов с помощью нескольких строк на PySpark. Запуск и использование PySpark в Google Colab Предположим, необходимо определить потенциальный доход от проведения обучающих...

Зачем вам Data Importer для Neo4j: краткий обзор апрельских обновлений

Сегодня в рамках продвижения нашего курса по графовой аналитике больших данных в бизнес-приложениях, рассмотрим новый инструмент популярной графовой СУБД Neo4j  для загрузки данных - Data Importer. Что это такое, как работает, чем полезно специалисту по Data Science и зачем обновлять его до последней версии. Что такое Neo4j Data Importer Графовая...

Анализ данных Youtube в реальном времени с Apache NiFi, Kafka и Spark Streaming

В этой статье для дата-инженеров рассмотрим пример конвейера анализа потокового видео с Youtube-каналов на Kafka, Spark Streaming и Elasticsearch c Kibana, связанных через процессоры Apache NiFi. Постановка задачи: ETL-конвейер анализа потоковых данных с Youtube Потоковые данные непрерывно генерируются тысячами источников, которые отправляют записи одновременно и в небольших размерах (порядка килобайт)....

Управление перемешиванием данных во время выполнения Flink-приложений

Мы уже писали про динамическое изменение правил фильтрации без перезапуска Flink-приложений. В продолжение этой темы в рамках продвижения нашего нового курса по потоковой обработке данных  помощью Apache Flink, сегодня рассмотрим, как избежать неравномерного распределения данных во время выполнения программы. Больше 3-х не собираться: бизнес-правила и динамика разделения данных Перекос или...

5 способов организации ETL-процессов с Greenplum: команды и утилиты

Мы уже рассматривали, как загрузить в Greenplum большие объемы данных. В продолжение этой важной для обучения дата-инженеров темы, сегодня разберем еще несколько инструментов, решающих задачу организации ETL-процессов с этой MPP-СУБД. ETL-инструменты PostgreSQL Хотя Greenplum может хранить и обрабатывать огромные наборы данных на уровне петабайт, эта СУБД не генерирует их самостоятельно,...

Apache Kafka в Walmart для масштабируемого пополнения запасов в реальном времени

Проблема своевременного пополнения товарных запасов актуальна для любого ритейлера. Разбираемся, как торговый гигант США Walmart построил свою платформу планирования и пополнения продукции в реальном времени на базе Apache Kafka: ключевые требования к системе, архитектура и принципы работы, настройка конфигураций продюсеров и потребителей. Постановка задачи: пополнение товарного запаса в реальном времени...

Feature Store на Apache HBase с Phoenix, RonDB и Kafka: кейс Dream11

Современные ML-системы представляют собой сложные комплексные платформы из множества компонентов, одним из которых является хранилище фичей для моделей машинного обучения. Индийская gamedev-компания Dream11 делится своим опытом, как построить такое Feature Store на базе Apache HBase с Phoenix, а также RonDB и Kafka. Что такое хранилище фичей и зачем это Dream11...

Анализ европейской газотранспортной системы с Neo4j

В рамках практического обучения аналитиков данных и специалистов по Data Science реальным задачам современных бизнес-приложений, сегодня разберем актуальную и острую для многих стран тему по промышленному использованию природных ресурсов в современных непростых условиях. Строим граф европейской газотранспортной системы в Neo4j. Создание графа европейской газотранспортной системы в Neo4j Российский природный газ...

3 режима вывода в Apache Spark Structured Streaming

Какие бывают режимы вывода в структурированной потоковой передаче Spark, чем они отличаются и как их использовать на практике: разбираемся на практическом примере. Краткий ликбез по output modes в Apache Spark Structured Streaming для обучения дата-инженеров и разработчиков распределенных приложений. Что такое режимы вывода в Apache Spark Structured Streaming Apache Spark...

Интеграция Apache NiFi и Hive в ETL-конвейере

В этой статье для дата-инженеров рассмотрим пример интеграции Apache NiFi c Hive в рамках ETL-конвейера потокового веб-скрейпинга, который будет получать данные с веб-страницы практически без кода, обрабатывать их и загружать в таблицу NoSQL-СУБД в реальном времени. Постановка задачи: ETL-процесс веб-скрейпинга В реальной жизни задача считать данные с веб-сайта для последующей...

Как написать свой ExecuteScript-процессор Apache NiFi на TypeScript

Сегодня рассмотрим, что такое процессор ExecuteScript в Apache NiFi, как с его помощью реализовать собственную бизнес-логику обработки потоков данных на мульти-парадигмальном языке программирования TypeScript и чем это будет лучше кода на JavaScript. Краткий ликбез для дата-инженеров. Процессор ExecuteScript в Apache NiFi Напомним, за обработку потоков данных в Apache NiFi  отвечают...

Больше или быстрее: ищем компромисс пропускной способности Apache Kafka

Пропускная способность информационной системы на базе Apache Kafka говорит о том, сколько данных могут быть обработаны за определенный период времени. Несмотря на потоковую передачу событий, здесь работает классический закон обратной зависимости скорости обработки данных от их объема. Разбираемся, как найти баланс между производительностью и задержкой. Еще раз о пропускной способности...

Как повысить эффективность кластера Apache HBase: YCSB-тестирование региональных серверов

Сегодня затронем тему администрирования кластеров Apache HBase и рассмотрим, приносит ли реальную пользу совместное размещение нескольких региональных серверов (RegionServer) на одном узле кластера. Сравнительный анализ по тестам YCSB-бенчмарка. Регионы и сервера Apache HBase Напомним, Apache HBase является популярной колоночной NoSQL-СУБД, которая работает поверх распределенной файловой системы HDFS и обеспечивает возможности...

3 метода управления разделами в Apache Spark

Мы уже рассказывали про функции перераспределения данных по разделам coalesce() и repartition(). Сегодня сравним их работу с еще одним методом управления разделами в Apache Spark и разберем, как все они могут помочь дата-инженеру и разработчику распределенных приложений повысить эффективность этого популярного фреймворка аналитики больших данных. Отобрать и поделить: лучшие практики партиционирования данных...

Что такое CML: MLOps и непрерывное машинное обучение

Что такое непрерывное машинное обучение, как оно работает и при чем здесь MLOps. Почему  сложно вести разработку ML-моделей в стиле CI/CD и как CML помогает обойти эти ограничения. Автоматизация процессов непрерывной интеграции и доставки с помощью open-source CLI-инструмента от Iterative.ai. Трудности CI/CD в Machine Learning и MLOps Поддерживаемые DevOps-концепцией идеи...

Neo4j на страже закона: кейс поиска рецидивистов

Как быстро и эффективно с помощью Neo4j выявить преступников, незаконно ввозящих в страну контрафактные товары. Почему графовая СУБД Neo4j обошла документо-ориентированную MongoDB, из чего состоит алгоритм поиска рецидивистов средствами технологий аналитики больших данных и как это может пригодиться в других бизнес-приложениях. Постановка задачи: сложности отслеживания контрафакта Каждый день практически в...

Прожорливый Apache NiFi: обработка потоков и проблемы потребления ресурсов

Недавно мы рассказывали про тонкости хранения потоковых файлов в Apache NiFi. Продолжая эту важную для обучения дата-инженеров тему, сегодня разберем еще несколько причин повышенного потребления ресурсов при работе с этим фреймворком и способы обхода этих ограничений. Характер потоков и размер репозитория Apache NiFi не позволяет управлять ресурсами в разрезе потоков...

Обнаружение мошенничества при скимминге банковских карт c Apache Kafka, Flink и HBase

Пример выявления финансового мошенничества  при скимминге банковских карт в банкоматах с помощью технологий Big Data. Как Apache Kafka, Flink и HBase помогут обнаружить злоумышленников в режиме реального времени. Что такое скимминг, как это работает и чем опасно Скимминг является одним из частых видов мошенничества с банковскими картами, представляющий собой считывание...

Отказы в Kafka-приложениях и FMECA-анализ: определить и устранить сбои

Хотя Apache Kafka является надежной платформой потоковой обработки событий, что особенно важно для распределенных приложений, отказы случаются и в ней. Сегодня разберем важную для обучения разработчиков и дата-инженеров тему про идентификацию и обработку отказов в Kafka-приложениях с помощью простого, но эффективного метода теории надежности. Что такое  FMECA-анализ, как его проводить...