Мониторинг микросервисов с Apache Kafka, Jaeger и OpenTelemetry

В этой статье для обучения дата-инженеров и архитекторов распределенных систем рассмотрим, что такое наблюдаемость, как ее измерить и при чем здесь стандарт OpenTelemetry. А в качестве примера разберем, как французский маркетплейс Cdiscount управляет почти 1000 микросервисов в кластере Kubernetes с Apache Kafka, Jaeger, Elasticsearch и OpenTelemetry. Наблюдаемость распределенной системы: стандарт...

MLOps и ТОП-7 фреймворков для федеративного машинного обучения

Сегодня в области Data Science именно машинное обучение является такой одновременно научной и прикладной сферой, где постоянно возникают новые прорывные идеи и технологии их реализации. Одной из самых популярных ML-тем сегодня считается федеративное машинное обучение. Что это такое и при чем здесь хайповый MLOps, читайте далее. Что такое федеративное машинное...

Spark vs Dask для Data Science-проектов

Сегодня разберемся, когда для Data Science-проектов вместо Apache Spark, самого популярного вычислительного движка аналитики больших данных, стоить выбрать Dask – легковесную Python-библиотеку для параллельных вычислений. И, наоборот, в каких случаях инженер данных и Data Scientist получают преимущества, выбирая Spark. Что такое Dask и зачем он нужен Data Scientist’у Прежде чем...

Apache Hive 3.1.3: обзор обновлений от 8 апреля 2022

В апреле 2022 года вышел очередной минорный релиз Apache Hive, который работает с Hadoop версии 3. Рассмотрим основные улучшения и исправленные ошибки этого обновления, которые пригодятся дата-инженеру и разработчику распределенных приложений аналитики больших данных. Исправленные ошибки В апрельском выпуске популярного NoSQL-хранилища Apache Hive,  которое реализует возможность обращения к данным в...

Улучшение совместимости Greenplum и HDFS благодаря записи/чтению AVRO-файлов с PXF

В этой статье для дата-инженеров рассмотрим новую полезную фичу июньского выпуска Greenplum и обновления интеграционного фреймворка PXF, который обеспечивает интеграцию этой MPP-СУБД с внешними источниками и приемниками данных. Читайте далее, как PXF поддерживает запись данных в формате AVRO в Hadoop HDFS и хранилища объектов, а также чтение логических типов этого...

DWH + Data Lake или что такое LakeHouse

В рамках обучения дата-инженеров и архитекторов корпоративных платформ и приложений аналитики больших данных, сегодня рассмотрим, что такое LakeHouse. Как эта новая гибридная архитектура управления данными объединяет 2 разнонаправленные парадигмы хранения информации, а также чего от нее ожидают бизнес-пользователи, дата-инженеры, аналитики и ML- специалисты. Историческая справка: от DWH к Data Lake...

Как отловить ошибки в конвейере данных на Apache NiFi: лучшие практики

В этой статье для обучения дата-инженеров рассмотрим, почему в потоковых конвейерах обработки данных на базе Apache NiFi случаются ошибки, и какие популярные стратегии и инструменты помогут идентифицировать эти проблемы, а также решить их. Проблемы конвейеров обработки данных на Apache NiFi Конвейеры данных помогают консолидировать информацию из разных источников, чтобы получить...

Мониторинг Flink-приложений: метрики JVM и RocksDB

Мы уже рассматривали важность мониторинга приложений Apache Flink и говорили про метрики отслеживания задержки обработки данных в потоковых заданиях. Сегодня заглянем под капот этого фреймворка и разберем, какие показатели работы JVM, а также RocksDB особенно важны для дата-инженера и разработчика распределенных приложений. Метрики JVM во Flink-приложениях Напомним, основным языком разработки...

3 способа прервать DAG lineage в Apache Spark

Недавно мы говорили про трудности наблюдаемости данных вообще и возможности мониторинга их происхождения в Apache Spark. Сегодня рассмотрим, зачем дата-инженеру прерывать DAG lineage в Spark-приложениях и как это сделать. Что такое DAG lineage и зачем его прерывать? Напомним, Apache Spark использует концепция DAG для выполнения распределенных вычислений. Направленный ациклический граф...

Управление купонами на скидки в маркетплейсе Trendyol с Apache Kafka и Couchbase

Сегодня рассмотрим пример программы лояльности турецкого интернет-магазина Trendyol, где Apache Kafka и документо-ориентированная NoSQL-СУБД Couchbase используются для генерации купонов на скидки. Почему при большом объеме данных случаются проблемы тайм-аутов в Couchbase, как их решить и  при чем здесь коннекторы к Apache Kafka. Архитектура системы управления купонами Trendyol – это популярный...

Apache Spark 3.3.0: ТОП-10 новинок июльского релиза 2022

16 июня 2022 года вышла новая версия Apache Spark – 3.3.0. Разбираем главные фичи этого минорного релиза, особенно важные для дата-инженера и разработчика распределенных приложений: от расширения поддержки ANSI SQL до профилирования UDF на Python. Главные изменения Apache Spark 3.3.0 Apache Spark 3.3.0 — это четвертый релиз линейки 3.x, в...

Мониторинг задержки в приложениях Apache Flink

Недавно мы говорили про непрерывный мониторинг Flink-приложений и подробно рассмотрели метрики состояния и пропускной способности. В продолжение этой важной для разработчиков и дата-инженеров темы, сегодня рассмотрим, как идентифицировать временную задержку обработки данных. Пользовательские метрики задержки в потоковых приложениях Для потоковых приложений, которые обрабатывают события в режиме, близком к реальному времени,...

Происхождение данных в Apache Spark со Spline и не только

Вчера мы рассказывали, почему важна наблюдаемость данных какие платформы помогают комплексно обеспечить все ее аспекты. В продолжение этой темы сегодня заглянем под капот происхождения данных в Apache Spark с помощью агента Spline и других способов. Трудности data lineage в Apache Spark Когда конвейер данных выходит из строя, дата-инженеру нужно скорее...

Что такое наблюдаемость данных и как ее обеспечить

Сегодня рассмотрим, почему наблюдаемость данных так важная для проектов Big Data, какие компоненты обеспечивают ценную информацию о качестве и надежности данных, чем это похоже на DataOps, а также как эти идеи реализовать на практике с использованием популярных инструментов современной дата-инженерии. Почему важна наблюдаемость данных Цифровизация предполагает управление на основе качественных...

Мониторинг приложений Apache Flink: метрики и инструменты

Специально для обучения разработчиков распределенных приложений и дата-инженеров масштабных платформ аналитики больших данных на Apache Flink, рассмотрим наиболее важные системные показатели, а также инструменты мониторинга этих метрик. Мониторинг Flink-приложений: особенности и метрики В общем случае мониторинг приложений гарантирует, что ПО обрабатывает данные и выполняет запрошенные действия ожидаемым образом. Непрерывное отслеживание...

7 приемов оптимизации SQL-запросов в Apache Hive с движком Tez

Для обучения дата-инженеров и аналитиков данных, сегодня рассмотрим приемы оптимизации SQL-запросов в Apache Hive, выполняемых движком Tez. Каким образом Tez рассчитывает оптимальное количество редукторов, зачем включать индексацию фильтров, как статистика таблицы помогает улучшить план выполнения запросов и что за конфигурации нужно менять. 3 движка выполнения запросов в Apache Hive Напомним,...

Greenplum 6.21.0: новые фичи и исправления ошибок

10 июня 2022 года вышел свежий релиз популярной MPP-СУБД. Разбираемся с улучшениями функциональных возможностей и решенными проблемами в Greenplum версии 6.21.0. Самое важное для администратора кластера и дата-инженера. 4 новых модуля свежего релиза В Greenplum 6.21.0 теперь поддерживается команда SET TRANSACTION SNAPSHOT, которая устанавливает характеристики текущей транзакции, не влияя на...

Управляемые повторы отправки сообщений из Apache Kafka c фреймворком Sping

Специально для обучения разработчиков распределенных приложений и дата-инженеров, рассмотрим практический пример использования возможностей фреймворка Spring для управления повторными попытками отправки сообщений потребителям из топика Apache Kafka. Повторные попытки отправки сообщений и Spring для Apache Kafka Довольно часто Kafka-приложения требуют высокой надежности обработки сообщений. Например, в финтех- или медтех-проектах, а также...

Потоки и пакеты: сходства, отличия и примеры применения

Сегодня рассмотрим 2 основные категории технологий обработки данных: пакетную и потоковую. Что общего между batch и stream processing, где они применяются, какими технологиями поддерживаются, можно ли их использовать вместе и как это сделать: ликбез по архитектуре больших данных. Потоковая и пакетная обработка: краткий обзор с примерами Обработки данных в режиме...

Apache NiFi 1.16.3: обзор июньского релиза 2022

15 июня 2022 года вышел новый выпуск Apache NiFi. Разбираем, что нового и полезного в релизе 1.16.3: исправленные ошибки, а также улучшения, важные для дата-инженера и администратора кластера Apache NiFi. 7 исправленных ошибок в релизе 1.16.3 Apache NiFi – один из самых популярных и востребованных инструментов современного дата-инженера. Эта платформа...