Что такое SPIP: 4 предложения по улучшению Apache Spark

Сегодня рассмотрим, какие улучшения Apache Spark опубликованы в 2023 году и как подать свое предложение по улучшению самого популярного вычислительного движка в стеке Big Data. Что такое SPIP и как подать свое предложение по улучшению фреймворка В любом продукте помимо ошибок есть также предложения по улучшению. В Apache Spark они...

Apache AirFlow vs Spark в Databricks для оркестрации рабочих процессов

Чем отличается оркестрация ETL-процессов в Databricks и Apache AirFlow: принципы работы, достоинства и недостатки, а также что выбирать дата-инженеру для решения практических задач. Apache AirFlow vs Spark в Databricks: сходства и отличия Облачная платформа Databricks, основанная на Apache Spark, предлагает пользователям единую среду для создания, запуска и управления различными рабочими...

Параллельное восстановление таблицы из резервной копии базы в Greenplum

Почему в Greenplum 7 восстановление данных из резервной копии базы стало медленнее и как разработчики это исправили: причины замедления и способы их устранения. SQL-синтаксис и восстановление из бэкапа Напомним, 7-ой релиз Greenplum имеет много интересных и полезных функций, включая возможность определять партиционированную таблицу без определения дочерних разделов и изменять таблицы...

Программируй на английском: ИИ-SDK для PySpark от Databricks

Как получать результаты обработки данных с помощью Apache Spark, адресуя ИИ бизнес-запросы на английском языке: знакомимся с English SDK от Databricks. Настоящий Low Code с PySpark-AI. English SDK for Apache Spark и PySpark-AI: как это работает Большие языковые модели (LLM, Large Language Model), основанные на генеративных нейросетях, применимы не только...

Apache Kafka, BPMS и оркестрация процессов: versus или вместе

Может ли Apache Kafka поддерживать не только хореографический стиль взаимодействия между разными сервисами, кто и как организует оркестрацию рабочих процессов с помощью этой распределенной платформой потоковой передачи и почему она не заменит BPM-движки. Оркестрация событий с Apache Kafka При использовании Apache Kafka в архитектуре, управляемой событиями (EDA, Event Driven Architecture),...

Как Apache Flink работает с файловыми системами

Какие файловые системы поддерживает Apache Flink: средства взаимодействия с файлами, хранящимися локально или в объектных хранилищах HDFS, S3 и GCS. Особенности работы с файловыми системами в Apache Flink Apache Flink имеет собственную абстракцию файловой системы через класс org.apache.flink.core.fs.FileSystem. Эта абстракция обеспечивает общий набор операций и минимальные гарантии для различных типов...

Квотирование в Apache Kafka

Что такое квоты в Apache Kafka и как этот механизм позволяет управлять ресурсами брокера, предупреждая DDOS-атаки от слишком активных потребителей и продюсеров. Разбираемся с типами клиентских квот, их конфигурациями и принципами работы. Квоты клиента и пользователя в Apache Kafka Чтобы управлять ресурсами брокера, кластер Kafka может применять квоты на запросы...

Отладка PySpark-приложений: журнал регистрации событий

Сегодня рассмотрим особенности отладки PySpark-приложений: как Python-код исполняется в JVM, какие сложности возникают у разработчика при тестировании и исправлении ошибок в программе, написанной локально и запускаемой в кластере, а также как настроить вывод событий в лог-файл. Запуск и выполнение PySpark-кода Хотя Apache Spark и имеет Python API, позволяя писать код...

Обогащение потока данных в Apache Flink: 3 способа добавить эталонные значения

Что такое потоковое обогащение данных, зачем это нужно и как оно реализуется в Apache Flink. Проблемы и решения предварительной загрузки справочных данных в память, синхронного и асинхронного поиска в источнике по каждой записи и организация потоковой передачи событий. 3 способа загрузить эталонные (справочные) данных в Apache Flink для обогащения потока...

Как проект Lightspeed от Databricks делает Apache Spark еще быстрее: асинхронное управление смещениями

В прошлом году Databricks выпустили новый проект для ускорения потоковой передачи в Apache Spark. Сегодня рассмотрим, как именно Lightspeed сокращает задержку в операционных рабочих нагрузках Structured Streaming с помощью асинхронного управления смещением. Операционные рабочие нагрузки и что их тормозит в Apache Spark Structured Streaming Рабочие нагрузки потоковой передачи можно разделить...