Недавно мы писали про Apache AirFlow 2.3.0 от 30 апреля 2022 года. Сегодня более подробно разберем одну из главных новинок этого релиза – динамическое сопоставление задач. Что это такое, как работает и зачем нужно дата-инженеру. Что такое динамическое сопоставление задач в ETL-конвейере Напомним, динамическое сопоставление задач (Dynamic Task Mapping) считается...
30 апреля 2022 года вышел новый релиз Apache Airflow, который содержит более 700 коммитов с предыдущей версии 2.2.0 и включает 50 новых функций, 99 улучшений, 85 исправлений ошибок и несколько изменений в документации. Разбираемся, что особенно важно для дата-инженера в Apache Airflow 2.3.0. ТОП-7 главных фич Apache AirFlow 2.3.0: краткий...
Интеграция Apache Airflow с инструментами CI/CD является одной из лучших практик современной дата-инженерии, о чем мы недавно писали. Читайте далее, зачем нужно управлять кодом DAG с помощью популярных систем управления версиями и как это сделать на примере GitLab CI/CD. Сложности управления DAG в разных средах AirFlow Apache Airflow считается наиболее...
В продолжение недавней статьи для дата-инженеров по эффективной работе с Apache AirFlow, сегодня разберем еще несколько рекомендаций от компании Astronomer, которая продвигает и коммерциализирует этот ETL-оркестратор. Чем полезна микрооркестрация с несколькими средами AirFlow, как обеспечить повторное использование и воспроизводимость, зачем нужна интеграция с инструментами и процессами CI/CD. Микрооркестрация с множеством...
Сегодня рассмотрим несколько рекомендаций по построению масштабной и устойчивой экосистемы интеграции корпоративных данных на базе Apache AirFlow от компании Astronomer, которая активно способствует продвижению и коммерциализации этого популярного инструмента дата-инженерии. Как организовать эффективную маршрутизацию рабочих процессов с пакетным ETL-оркестратором: 3 лучших практики. Стандартизация сред разработки и промышленной эксплуатации с Kubernetes...
Почему следует избегать PythonOperator в конвейере обработки пакетных данных на Apache Airflow и что использовать вместо этого оператора для описания задач DAG. Когда лаконичный CLI лучше наглядного GUI, где и как применять библиотеку Python Fire для оркестрации, а также планирования запуска batch-заданий. Зачем нам CLI или что не так с PythonOperator...
Недавно в Google Dataproc появился бессерверный Apache Spark. Разбираемся, что это такое и зачем нужно дата-инженерам. Как работает serverless Spark в облачной платформе Google и почему выбирать между Dataflow и Dataproc стало еще сложнее. Блеск и нищета Google Dataproc Напомним, Google Dataproc – это облачный Hadoop, который работает аналогично другим...
Запуск Apache Airflow с Kubernetes сегодня стал стандартом де-факто. Однако, при практическом развертывании Airflow с помощью исполнителя Kubernetes и оператора пода в кластере этой платформы оркестрации контейнерных приложений возникает множество препятствий и трудностей. Сегодня рассмотрим, как обойти их с помощью service-mesh проекта с открытым исходным кодом Istio, какие проблемы могут при...
Сегодня разберем опыт австралийской ИТ-компании hipages по построению самообслуживаемого ETL-конвейера с Apache Airflow и Amazon Athena, призванного обеспечить высокое качество данных и облегчить дата-инженерам управление информационными активами. Изящное решение сложных проблем управления данными с примерами SQL-запросов к корпоративному Data Lake на AWS S3. Что не так с монолитной архитектурой платформы данных...
Apache Airflow – мощный инструмент современной дата-инженерии. Этот оркестровщик batch-процессов позволяет запускать цепочки задач в виде направленного ациклического графа (DAG) по расписанию. Однако, планировщик Airflow имеет некоторые специфические особенности, которые необходимо знать каждому разработчику Data Flow. Об этом мы сегодня поговорим. Планирование запуска DAG в Apache AirFlow: краткий ликбез Запуски DAG...
11 марта 2022 года вышла новая версия Apache Airflow Helm Сhart. Рассмотрим главные новинки релиза 1.5.0 и их практическую ценность с точки зрения прикладной дата-инженерии. А также разберем ключевые понятия этого менеджера пакетов Kubernetes. Что такое Helm chart в Kubernetes и причем здесь Apache AirFlow Напомним, Helm – это менеджер пакетов...
Благодаря возможности написать собственный Python-код для операторов и задач DAG’ов, Apache Airflow позволяет разработчикам Data Flow и инженерам данных создавать сложные и эффективные конвейеры пакетной обработки данных. Обеспечить надежность этого многообразия поможет качественное тестирование пользовательского кода. Рассмотрим примеры и рекомендации по написанию модульных тестов. Зачем тестировать DAG AirFlow? Модульные тесты...
Мы уже писали про датчики или сенсоры - особый тип операторов Apache AirFlow, предназначенных для ожидания какого-то события. Сегодня рассмотрим практический пример обучения дата-инженеров и разработчиков по использованию внешнего сенсора в рамках типовой задачи дата-инженерии по организации ETL/ELT-процессов при поэтапной загрузке данных в DWH для OLAP-систем. Постановка задачи: поэтапная загрузка...
В рамках обучения дата-инженеров и ML-специалистов лучшим практикам MLOps, сегодня рассмотрим практический пример построения конвейера машинного обучения на Airflow, MLFlow, SageMaker и других сервисах Amazon. А также как Apache Spark версии 3 сократил расходы на облачный EMR-кластер почти в 2 раза. MLOps с AirFlow и MLFlow в облаке AWS Ранее...
В октябре прошлого года вышел крупный релиз Apache AirFlow 2.2.0. Разбираем его главные фичи, которые больше всего интересны с точки зрения инженерии данных: пользовательские расписания и декораторы, отложенные задачи, а также валидация параметров DAG по JSON-схеме. Краткий обзор обновлений AirFlow 2.2.0 Хотя последней версией популярного batch-планировщика задач Apache Airflow на...
Сегодня заглянем под капот особых операторов Apache AirFlow, разберемся с режимами работы датчиков, а также рассмотрим, как создать собственный сенсор. Краткий ликбез по разработке своего sensor’а с лучшими практиками настройки и использования в DAG’ах AirFlow. Что такое сенсор: краткий ликбез по AirFlow Сенсоры или датчики AirFlow — это особый тип...
Развивая наши курсы по Apache Spark и AirFlow для дата-инженеров и администраторов кластеров, сегодня рассмотрим кейс крупного маркетплейса Joom по переходу от 2-ой версии фреймворка на облачной платформе EMR к развертыванию сотен распределенных заданий на 3-ей версии в Amazon Elastic Kubernetes Service. Про сокращение расходов, повышение производительности и апдейт вычислительных движков. Постановка...
Практическая реализация MLOps-концепции на примере международной рекрутинговой компании Glassdoor. Как построить самоуправляемую автоматизированную систему разработки и сопровождения ML-моделей с MLFlow, Apache Spark и AirFlow, Kubernetes, GitLab, SageMaker Feature Store, Whylogs, Jenkins, Spinnaker и Prometheus с Grafana. Предыстория: зачем MLOps в Glassdoor Glassdoor с 2008 года помогает соискателям по всему миру...
Сегодня обсудим ключевые тренды развития дата-инженерии и инструментальные средства их реализации. Как это применяется на практике, рассмотрим на примере эволюции хранилища данных в индонезийской ИТ-компании Bukalapak, от локального кластера Apache HBase до Лямбда-архитектуры в облаке Google Cloud Platform с Kafka, Spark и AirFlow. 7 главных драйверов развития дата-инженерии В наши...
В этой статье для дата-инженеров и администраторов кластеров разберем, как автоматически масштабировать поды Kubernetes с Apache AirFlow в зависимости от метрик рабочей нагрузки из внешней платформы Datadog с помощью демона StatsD, а также ресурса и контроллера HorizontalPodAutoscaler. Автоматическое горизонтальное масштабирование в Kubernetes Одна из сильных сторон Kubernetes заключается в его...