Почему ClickHouse подходит для архитектуры данных Medallion и как реализовать это слоистое хранилище средствами колоночной СУБД без сторонних инструментов: лучшие практики и примеры использования. 3 слоя архитектуры данных Medallion Слоистая архитектура, предложенная компанией Databricks, сегодня считается классикой для построения озер и хранилищ данных. Она предполагает реализацию 3-х уровней (слоев): Бронза,...
Зачем создавать разные проекции таблиц в базе данных и как это работает в Clickhouse: практический пример с агрегатным запросом. Возможности и ограничения механизма проекций в колоночной аналитической СУБД. Что такое проекции и как они реализованы в ClickHouse Поскольку основное назначение ClickHouse – аналитика больших объемов данных в реальном времени, это...
Чем полезна поддержка gRPC в Clickhouse и как ее реализовать: разбираем интерфейс удаленного вызова процедур на примере потоковой вставки событий пользовательского поведения из Kafka в таблицу колоночной базы данных со стриминговым выводом. Поддержка gRPC в ClickHouse ClickHouse поддерживает gRPC – фреймворк от Google и система удаленного вызова процедур с открытым...
Что не так с Apache Zookeeper и почему разработчики ClickHouse решили заменить его на встроенный сервис синхронизации метаданных на базе RAFT-протокола с линеаризацией записи и чтения. Как работает ClickHouse Keeper и где его настроить. Что не так с Apache Zookeeper Многие распределенные системы, которые состоят из нескольких узлов, для обеспечения...
Как ClickHouse реализует параллельные векторные вычисления над большим объемом данных на любых аппаратных платформах: диспетчеризация ЦП для выполнения SIMD-инструкций в сложных функциях. Реализация векторных вычислений в ЦП Как мы уже отмечали здесь, ClickHouse имеет встроенную поддержку векторных вычислений, когда при выполнении одной инструкции процессора производится не одна операция, а одновременно...
Что такое Observability и чем ClickHouse хорош для обеспечения наблюдаемости, как хранить журналы и трассировки в этой колоночной базе данных и для чего реализована интеграция с OpenTelemetry. Что такое Observability и чем ClickHouse хорош для обеспечения наблюдаемости Будучи колоночной базой данных, ClickHouse отлично подходит для мониторинга и анализа системных метрик,...
Как применить пользовательскую функцию Python к объектам pandas в распределенной среде Apache Spark. Варианты использования Pandas UDF, applyInPandas() и mapInPandas() на практических примерах. Разница между Pandas UDF, applyInPandas и mapInPandas в Apache Spark Недавно я показывала пример сравнения быстродействия метода applyInPandas() с функцией apply() библиотеки pandas. Однако, помимо applyInPandas() в...
Что такое Remote Shuffle Service в Apache Flink, зачем это нужно и как служба удаленного перемешивания позволяет создавать масштабируемые и надежные приложения для унифицированной потоковой и пакетной обработки больших объемов данных. Что такое Remote Shuffle Service в Apache Flink Apache Flink рассматривает пакетную обработку как частный случай потоковых вычислений. Однако,...
4 октября 2024 года вышел очередной релиз ClickHouse. Знакомимся с его самыми интересными особенностями: добавление строк в обновляемые материализованные представления, агрегатные функции для типов данных JSON и Dynamic, поддержка заголовков HTTP-ответов, автозамена строк с overlay-командами и другие новинки выпуска 24.9. Обновляемые материализованные представления Начнем с наиболее значимой новой функции ClickHouse...
Чем метод applyInPandas() в Spark отличается от apply() в pandas и насколько он быстрее обрабатывает данные: сравнительный тест на датафрейме из 5 миллионов строк. Методы применения пользовательских функций к датафреймам в Spark и pandas Мы уже отмечали здесь и здесь, что Apache Spark позволяет работать с популярной Python-библиотекой pandas, поддерживая...