ClickHouse 25.1: что нового?

7 февраля 2025 года вышел очередной релиз ClickHouse. Знакомимся с его главными новинками: ускорение параллельного хэш-соединения, индексы MinMax на уровне таблицы, автоинкременты полей и улучшенное объединение таблиц с табличной функцией merge. Улучшение параллельного хэш-соединения в ClickHouse 25.1 В ClickHouse 25.1 добавлено 15 новых функций, 36 улучшений и 77 исправлений ошибок....

Обогащение ошибок при сбоях заданий Apache Flink с FLIP-304

Как FLIP-304 помогает понять причину сбоя и повысить надежность Flink-приложения: обогащение типовых сообщений об ошибках пользовательскими метаданными. Зачем нужен FLIP-304 и как это позволяет дополнять сообщения об ошибках при сбоях заданий Apache Flink Хотя Apache Flink имеет встроенные механизмы обеспечения отказоустойчивости, такие как контрольные точки и точки сохранения, а также...

Как ClickHouse, MongoDB, Elasticsearch, DuckDB и PostgreSQL хранят и обрабатывают JSON-документы: подробности и детали

Особенности хранения и аналитической обработки JSON-документов в ClickHouse, MongoDB, Elasticsearch, DuckDB и PostgreSQL: объяснение бенчмаркингового теста. JSON в ClickHouse Недавно мы писали про бенчмаркинговое сравнение хранения и обработки JSON-данных в ClickHouse, MongoDB, Elasticsearch, DuckDB и PostgreSQL. В этом тесте, проведенном самими разработчиками ClickHouse, эта СУБД показала максимальную эффективность, которая обоснована...

Обработка и хранение JSON-документов: сравнение ClickHouse с MongoDB, Elasticsearch, DuckDB и PostgreSQL

Почему ClickHouse требует меньше места для хранения JSON-документов и быстрее выполняет аналитические запросы к ним по сравнению с MongoDB, Elasticsearch, DuckDB и PostgreSQL: бенчмаркинговый тест от разработчиков колоночной СУБД. Как Clickhouse делает быстрее агрегации в JSON-данных Хотя бенчмаркинговые тесты от вендоров редко бывают объективными, просматривать их довольно интересно. Недавно мне...

Место Trino в архитектуре данных

Почему Trino не заменит Flink, Spark и Airflow: границы применимости MPP-движка распределенного выполнения SQL-запросов к реляционным и нереляционным источникам данных. Почему Trino не заменит Flink, Spark и Airflow Хотя Trino отлично подходит для быстрой ad-hoc аналитики, позволяя SQL-запросами в реальном времени обращаться к различным базам данных, включая нереляционные хранилища и...

Отказоустойчивость Trino

Как устроен механизм отказоустойчивого выполнения в Trino, чем политика повтора QUERY отличается от TASK, зачем настраивать диспетчер обмена на внешнее S3-совместимое хранилище и задавать коэффициент задержки перед повторными попытками выполнить SQL-запрос. 2 политики отказоустойчивого выполнения в Trino Будучи движком online-обработки больших объемов данных с помощью распределенных SQL-запросов, Trino должен иметь...

Автогенерация AsyncAPI-спецификации для Kafka с FastStream: практический пример

Как получить спецификацию AsyncAPI из кода с помощью декораторов функций публикации и потребления сообщений средствами Python-библиотеки FastStream: простой пример потокового конвейера на Apache Kafka. Еще раз про FastStream и спецификацию AsyncAPI Вчера я рассказывала про Python-библиотеку FastStream для разработки потоковых конвейеров на Apache Kafka, RabbitMQ, NATS и Redis. Помимо мощного,...

FastStream для работы с Kafka: практический пример

Чем хороша Python-библиотека FastStream и как ее использовать для потоковой публикации данных в Apache Kafka: практический пример асинхронной отправки JSON-сообщений. О библиотеке FastStream Для Python-разработчиков есть довольно много библиотек, позволяющих взаимодействовать с Apache Kafka: kafka-python, confluent-kafka, Quix Streams и другие клиенты. О сравнении kafka-python и confluent-kafka я писала здесь, а...

Сериализация данных в Apache Flink

Какие типы данных поддерживает Apache Flink, как сериализация влияет на скорость обработки, зачем выбирать специализированные типы данных вместо общих структур и возможно ли изменение схемы данных без перезапуска приложения. Типы данных в Apache Flink В Apache Flink сериализация играет ключевую роль в процессе обработки данных, обеспечивая преобразование объектов в байтовый...

Открытый митап “Trino для нетерпеливых”

Для продвижения нашего нового курса для дата-инженеров Школа Больших Данных проводит очередной бесплатный митап для аналитиков, архитекторов, инженеров данных, разработчиков, DataOps- инженеров и тех, кто интересуется современными технологиями обработки данных. Trino – это распределенный SQL-движок с массово-параллельной архитектурой и открытым исходным кодом, предназначенный для работы с большими объемами данных в разных...

Дедупликация данных в ClickHouse: практический пример

Почему в хранилище и витрину данных могут попасть дубли, чем это чревато и какие встроенные механизмы дедупликации есть в ClickHouse. Примеры OPTIMIZE-запросов и работы с движком ReplacingMergeTree. Причины дублирования данных и их последствия Дублирование данных в хранилищах и в витринах – довольно частая проблема в дата-инженерии. Это приводит к росту...

Как работает spill-механизм в Trino и что с ним не так

Что происходит, когда Trino не хватает памяти для выполнения SQL-запроса, как выполняется сброс промежуточных результатов на диск и почему механизм spill-to-disk не избавляет от OOM-ошибок. Spill-to-disk: сброс промежуточных результатов на диск в Trino Продолжая вчерашний разговор про нехватку памяти (OOM, Out Of Memory) в Trino, сегодня рассмотрим, как работает spill-механизм...

Нехватка памяти в Trino и как устранить OOM-ошибку

Почему в кластере Trino может возникнуть OOM-ошибка и как справиться с нехваткой памяти, оптимизировав SQL-запросы и настроив конфигурации: примеры и рекомендации. Причины OOM-ошибок в кластере Trino и как их устранить Для Trino, как и для многих JVM-приложений, характерны проблемы с управлением памятью, включая возникновение OOM-ошибок (Out Of Memory). Это связано...

Фаззинг-тестирование ClickHouse с BuzzHouse

Что такое фаззинг-тестирование, зачем нужен новый фаззер для ClickHouse, и как BuzzHouse выявляет сложные проблемы и потенциальные уязвимости самой популярной колоночной СУБД, Что такое фаззинг-тестирование баз данных Поскольку база данных тоже программный продукт, перед выпуском в релиз она тестируется. Используемых при этом методов тестирования довольно много, и одним из них...

Битва движков унифицированной обработки: Apache Beam vs Flink

Чем Apache Beam отличается от Apache Flink, что и когда выбирать, зачем их совмещать для реализации сложных конвейеров обработки больших объемов данных с помощью распределенных stateful-приложений, и как это работает. Сходства и отличия Apache Beam и Flink Хотя Apache Beam является унифицированной моделью определения пакетных и потоковых конвейеров параллельной обработки данных,...

Легковесная разработка унифицированных конвейеров Apache Beam с YAML API

Как написать конвейер обработки данных Apache Beam, задав цепочку преобразований в YAML-конфигурации: практический пример фильтрации и агрегации платежей из CSV-файла. Пример разработки и запуска YAML-конвейера Apache Beam в Google Colab Недавно я рассказывала про Apache Beam – унифицированную модель определения пакетных и потоковых конвейеров параллельной обработки данных, которую можно запустить...

ClickHouse vs Apache Doris: что выбрать для хранилища данных

Что такое Apache Doris, как его использовать для построения хранилища данных и чем это отличается от ClickHouse. Сценарии применения и критерии выбора основы DWH. Что такое Apache Doris Недавно мы рассматривали, почему ClickHouse подходит для реализации хранилища данных на основе эталонной архитектуры Medallion благодаря поддержке более 70 форматов файлов, материализованным...

Настройка серверов Kafka в режиме KRaft

Чем контроллеры Kafka в режиме KRaft отличаются от режима Zookeeper, как их настроить и чем статический кворум отличается от динамического: краткий ликбез для администратора кластера. Брокеры и контроллеры: новые роли серверов Kafka в режиме KRaft Поскольку уже совсем скоро, в мажорном релизе Kafka 4.0, ожидается полный отказ от Zookeeper в...

Потоковая обработка данных и EDA-архитектура для LLM-систем

Почему генеративный ИИ основан на потоковой обработке данных и EDA-архитектуре, для чего оценивать качество LLM-модели и как построить такую систему мониторинга: подходы и технологии. О важности потоковой обработки данных и EDA-архитектуры для LLM-систем Все больше современных бизнес-приложений включают в себя большие языковые модели (LLM, Large Language Model), чтобы автоматизировать поддержку...

Разработка унифицированных конвейеров обработки данных с Apache Beam

Что такое Apache Beam, зачем он нужен, чем полезен дата-инженеру и как его использовать: архитектура, принципы работы и примеры построения пакетных и потоковых конвейеров обработки данных. Что такое Apache Beam и зачем он нужен Хотя выбор технологического стека – один из важнейших вопросов архитектурного проектирования, иногда требуется универсальное решение построения...