Как посмотреть GUI приложения Apache Spark в Google Colab с ngrok

Сегодня посмотрим, как запустить Spark-приложение в Google Colab и увидеть сведения о его выполнении в веб-интерфейсе на удаленной машине, тунеллированной с помощью утилиты ngrok. Проброска туннеля в Google Colab с ngrok для Spark-приложения Хотя назвать Google Colab удобной средой для разработки приложений или исследования данных, нельзя, им часто пользуются аналитики...

Как механизм AQE выполняет динамическое объединение разделов в Apache Spark

Недавно мы рассматривали практический пример разделения большого датафрейма Apache Spark на несколько разделов. Сегодня поговорим о том, как их объединить с помощью механизм AQE и динамической настройки конфигурации spark.sql.shuffle.partitions. Разделы и оптимизация распределенных вычислений в Spark-приложениях Распределение данных по разделам сильно влияет на скорость работы Spark-приложений. Распределенное приложение выполняется наиболее...

Средства обеспечения безопасности в приложениях Apache Spark

В этой статье для дата-инженеров и разработчиков распределенных приложений рассмотрим, какие механизмы обеспечения информационной безопасности поддерживает Apache Spark и как организовать безопасное взаимодействие Spark-приложения с хранилищами данных в экосистеме Hadoop. Безопасная работа Spark-приложений с сервисами Hadoop Многие технологии Big Data изначально оптимизированы для хранения и аналитики больших объемов данных с...

В помощь дата-инженеру: как организовать конвейер инкрементной загрузки данных

Инкрементные конвейеры загрузки больших объемов данных в корпоративное хранилище или озеро как самый экономичный способ масштабирования архитектуры данных. Разбираемся, как дата-инженеру эффективно организовать такие ETL-конвейеры. 2 способа организации конвейеров инкрементной загрузки данных Инкрементный ETL (Extract, Transform and Load) для классического DWH стал обычным явлением с источниками CDC (сбор данных об...

Разделение датафрейма с partitionBy() в Apache Spark: практический пример

Как сгенерировать набор тестовых данных с Python-библиотекой Faker и разделить данные по разделам, используя функцию partitionBy() в PySpark. Работаем с Apache Spark в Google Colab. Как работает partitionBy() в Apache Spark Чтобы записать на диск один большой датафрейм, разделив его на несколько более мелких файлов, в Python API фреймворка Apache...

Apache Spark 3.4.0: обзор апрельского релиза

12 апреля 2023 года вышел очередной релиз Apache Spark. Разбираемся с самыми главными новинками этого выпуска, которые порадуют аналитиков, разработчиков, инженеров данных и специалистов по Data Science. Расширенная поддержка Python, улучшения Spark SQL и Structured Streaming. Обновления Spark SQL и новинки для пользователей Python Apache Spark 3.4.0 — это пятый...

Проблемы shuffle-операций в Spark SQL и способы их решения

Почему на самом деле нельзя избежать shuffle-операций в Spark SQL, в чем разница перетасовки RDD и датафреймов, а также как сократить негативное влияние перемешивания данных по узлам кластера, настроив конфигурации распределенного приложения. Что такое shuffle-операции в Apache Spark SQL и зачем они нужны Распределенный характер вычислительного движка Apache Spark позволяет...

Сервер истории и слушатели событий Apache Spark

Сегодня познакомимся с сервером истории Apache Spark: зачем он нужен, как работает и при чем здесь слушатели событий. Отладка и мониторинг распределенных приложений для дата-инженера в веб-GUI. Что такое сервер истории Apache Spark Каждый раз при запуске Spark-приложения его контекст SparkContext запускает веб-интерфейс по умолчанию на порту 4040. Если несколько...

2 режима развертывания приложений Apache Spark

Как разработчику выбрать подходящий режим развертывания для своего Spark-приложения, достоинства и недостатки клиентского и кластерного режимов, а также особенности запуска под управлением YARN. Архитектура и режимы развертывания Spark-приложения Будучи фреймворком для создания приложений быстрой обработки Big Data, Apache Spark имеет несколько режимов развертывания, которые зависят от варианта запуска Spark-приложения: на...

Возможности и ограничения Dataset API в Apache Spark

В Apache Spark есть 3 структуры данных, каждая из которых имеет собственный API со своими достоинствами и недостатками. Сегодня разберем плюсы и минусы Dataset API, а также рассмотрим особенности JOIN-операций в нем. Почему Dataset API в Apache Spark работает только со Scala и Java Напомним, структура данных Dataset впервые появилась...

Поиск по сайту