Как получить доступ к данным в AWS S3 из кластера Apache Hadoop через Hive и Spark

Чтобы сделать наши курсы по Apache Hadoop и компонентам этой экосистемы хранения и эффективной аналитики больших данных еще более полезными, сегодня рассмотрим, как получить данные из облачного объектного хранилища AWS S3 с помощью заданий Hive и Spark. А также заглянем внутрь конфигурационных xml-файлов Hadoop и Hive. Еще раз о разнице...

Все сложно: Morpheus, Cypher и Apache Spark GraphX

В рамках нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим, как язык запросов Cypher должен был появиться в Apache Spark 3.0, зачем это нужно и почему до сих пор не реализовано. Краткая история проекта Morpheus, его связь с Neo4j, а также модулями Spark GraphX и GraphFrames. Что такое Morpheus...

Интеграция Neo4j с Apache Spark: обзор коннектора 4.1

Продвигая наш новый курс по графовой аналитике больших данных в бизнес-приложениях, сегодня заглянем под капот коннектора Neo4j к Apache Spark. Сценарии использования, принципы работы, поддержка потоковой передачи Spark и другие новинки версии 4.1 для построения эффективных аналитических коннекторов с помощью алгоритмов на графах. Как работает коннектор Neo4j к Apache Spark: краткий обзор Осенью...

На заметку разработчику Spark-приложений: 3 ошибки PySpark и тонкости Outer Join

В этой статье для дата-аналитиков и разработчиков распределенных приложений рассмотрим несколько распространенных ошибок, которые можно сделать в PySpark-коде. Когда PySpark-код на DataFrame DSL лучше запросов Spark SQL, как изящно решить проблему длинных строк, почему пользоваться функцией cache() надо осторожно, а также откуда появляются NULL-значения при внешних соединениях потоковых таблиц. Spark...

Apache Spark 3.2.0 и Scala 3.0: что нового?

В начале сентября 2021 года вышел 3-й релиз языка программирования Scala, который разработчики называют полностью переработанным из-за модернизации системы типов и добавления новых функций. Текущая версия Apache Spark 3.2.0, выпущенная месяцем позже, поддерживает Scala 2.13 и 3.0 с ограничением некоторых возможностей. Читайте далее, как разработчикам распределенных Spark-приложений писать задания на...

Проблема вызовов REST API в Apache Spark и способы ее решения

В этой статье для разработчиков Apache Spark разберем, что не так с вызовами REST API в этом фреймворке, и как решить эту проблему с помощью готовых библиотек или создания собственных UDF-функций на PySpark и не только. Для наглядности рассмотрим практический пример вызова REST API на PySpark с библиотекой Rest Data...

4 причины сбоя в системах на Apache Hadoop, Spark и Livy + способы их лечения от дата-инженеров Pinterest

Сегодня разберем типовые ошибки, которые часто возникают в системах аналитики больших данных на базе Apache Hadoop YARN, Spark и RESTful-интерфейсу Livy, а также каким образом их избежать. В качестве практического примера используем ранее рассмотренный кейс интерактивной аналитики о пользовательском поведении в фотохостинге Pinterest. Интерактивная аналитика больших данных в Pinterest Недавно...

Бакетирование vs партиционирование в Apache Hive и Spark

В этой статье рассмотрим 2 способа физической группировки данных для ускорения последующей обработки в Apache Hive и Spark: партиционирование и бакетирование. Чем они отличаются друг от друга, что между ними общего и какой рост производительности дает каждый из методов в зависимости от задач аналитики больших данных средствами Spark SQL. Еще...

Графовая аналитика больших данных с DataStax Enterprise Graph на Cassandra и Spark SQL

В рамках продвижения нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим, что такое DataStax Enterprise Graph. Читайте далее, как немецкая ИТ-компания Traversals с помощью этой распределенной графовой СУБД построила масштабное аналитическое решение для кибербезопасности, обнаружения мошенничества, анализа конкурентов и оповещения клиентов в реальном времени. Также разберем, при...

Интерактивная аналитика больших данных с Apache Spark SQL и Livy: кейс Pinterest

Сегодня в качестве полезного примера для обучения дата-инженеров и разработчиков Spark-приложений, разберем кейс компании Pinterest по интерактивной аналитике больших данных средствами SQL-модуля этого популярного фреймворка. Читайте далее, почему дата-инженеры решили заменить HiveServer2 на Spark Thrift JDBC/ODBC, зачем понадобилось писать собственный клиент поверх Apache Livy и как это было сделано. Зачем...

Поиск по сайту