Как создать микросервисный ML-конвейер в реальном времени на Apache Kafka и Spark

Чтобы дополнить наши курсы по Kafka и Spark интересными примерами, сегодня рассмотрим практический кейс разработки микросервисного конвейера машинного обучения на этих фреймворках. Читайте далее, зачем выносить ML-компонент в отдельное Python-приложение от остальной части Big Data pipeline’а, и как Docker поддерживает эту концепцию микросервисного подхода. Постановка задачи и компоненты микросервисного ML-конвейера...

Зачем Apache Hive внешняя база данных для MetaStore: смотрим на примере Arenadata Hadoop 2.1.4 со Spark 3

В июле 2021 года «Аренадата Софтвер», российская ИТ-компания разработчик отечественных решений для хранения и аналитики больших данных, представила минорный релиз корпоративного дистрибутива на базе Apache Hadoop — Arenadata Hadoop 2.1.4. Главными фишками этого выпуска стало наличие 3-й версии Apache Spark и External PostgreSQL для Hive MetaStore. Сегодня рассмотрим, что именно...

Непредсказуемость Apache Spark SQL и как от нее избавиться: про UDF и Catalyst

Сегодня в рамках обучения разработчиков Apache Spark и дата-аналитиков, поговорим про детерминированность UDF-функций и особенности их обработки оптимизатором SQL-запросов Catalyst. На практических примерах рассмотрим, как оптимизатор Spark SQL обрабатывает недетерминированные выражения и зачем кэшировать промежуточные результаты, чтобы гарантированно получить корректный выход.   Еще раз про детерминированность функций и планы выполнения...

ADB-Spark Connector: интеграция Spark и Greenplum от Аренадата

Мы уже рассказывали про коннектор Greenplum-Spark, 2-я версия которого вышла в октябре 2020 года. А сегодня рассмотрим российскую альтернативу для отечественной MPP-СУБД Arenadata DB на базе Greenplum, выпущенную компанией Аренадата в июле 2021 года. Краткий обзор ADB-Spark Connector: архитектура, принципы работы, сценарии использования, а также отличия от PXF-фреймворка и варианта...

Tez vs Spark: что выбрать для Apache Hive

Вчера мы упоминали, что использование Spark или Tez в качестве движка исполнения SQL-запросов в Apache Hive вместо классического Hadoop MapReduce намного ускоряет аналитику больших данных. Сегодня рассмотрим подробнее, чем отличаются эти механизмы и какой из них выбирать в разных случаях использования. Что такое Apache Tez и как он работает с...

5 вопросов про масштабирование Spark-приложений

Чтобы добавить в наши курсы по Spark еще больше практических кейсов, сегодня ответим на самые частые вопросы относительно масштабирования распределенных приложений, написанных с помощью этого фреймворка. Читайте далее о пользе динамического распределения, оптимальном выделении ресурсов на драйверы и исполнители, а также каковы тонкости управления разделами в Apache Spark. Лебедь, рак...

JVM Garbage Collection и не только: 7 причин OOM-ошибки в Apache Spark

Обучая разработчиков Big Data, сегодня рассмотрим, почему в распределенных приложениях Apache Spark случаются OOM-ошибки. Читайте далее, как работает сборка мусора JVM в Spark-приложениях, почему из-за нее случаются утечки памяти и что можно сделать на уровне драйвера и исполнителя для предупреждения OutOfMemoryError. Сборка мусора JVM и OOM-ошибки в Spark-приложениях На практике...

Что посмотреть в Apache Spark UI: 5 полезных кейсов для разработчика Big Data

В этой статье по обучению Apache Spark рассмотрим, чем графический веб-интерфейс этого фреймворка полезен разработчику распределенных приложений. Читайте далее, где посмотреть кэшированные данные, визуализацию DAG, переменные среды, исполняемые SQL-запросы, а также прочие важные метрики кластерных вычислений и аналитики больших данных. 9 страниц Apache Spark UI Apache Spark предоставляет набор пользовательских...

Что не так с UDF-функциями в Apache Spark SQL и как это исправить

Продвигая наши курсы по Apache Spark для разработчиков, сегодня рассмотрим пользовательские функции и особенности работы с ними в API SQL-модуле этого фреймворка. Читайте далее про идемпотентность UDF-функций и их влияние на распределение данных в кластере Apache Spark. Как устроены UDF в Apache Spark: краткий ликбез Пользовательские функции (User Defined Functions,...

Особенности оконных функций и кэширования датафреймов в Apache Spark SQL

В рамках обучения разработчиков Apache Spark, сегодня рассмотрим еще несколько интересных особенностей этого фреймворка, ограничивающих его типовые возможности и на PySpark-примерах разберем, как с этим бороться. Читайте далее, что такое оконные функции и зачем они нужны, как сортировка влияет на фрейм окна в Spark SQL и чем опасны действия над...

Еще 3 причуды API DataFrame в Apache Spark, о которых вы не знали

Чтобы сделать наши курсы по Apache Spark еще более полезными, мы рассказываем о неочевидных тонкостях этого фреймворка, знание которых позволит разработчику распределенных приложений использовать возможности этой технологии более эффективно. Сегодня на практических примерах PySpark в API DataFrame рассмотрим разницу между функциями сортировки массивов и особенности объединения контенкации, а также разберемся...

Преобразования vs действия: под капотом операций Apache Spark

Продолжая разговор про вычислительные операции над датафреймами в Apache Spark, сегодня рассмотрим, какие преобразования (transformations) и действия (actions) чаще всего используются при разработке распределенных приложений и аналитике больших данных. Читайте далее, про виды столбцовых преобразования и отличия действия collect() от take(). Преобразования в Apache Spark: виды и особенности реализации Напомним,...

Как быстрее обработать массив в Apache Spark 3.1: сравнение 9 разных методов

Apache Spark предоставляет для разработчика распределенных приложений множество возможностей, позволяя достигать одной целей разными способами. Чтобы проиллюстрировать это, сегодня рассмотрим бенчмаркинговое сравнение 9 методов обработки массивов в Spark 3.1, обращая внимание на их производительность и особенности использования. Также разберем важные для обучения разработчиков Spark темы про отличия преобразований от действий...

Кейс потоковой аналитики больших данных с Apache Kafka, Spark (Flink) и BI-системами

Сегодня рассмотрим пример построения системы потоковой аналитики больших данных на базе Apache Kafka, Spark, Flink, NoSQL-СУБД, BI-системой Tableau или визуализацией в Kibana. Читайте далее, кому и зачем исследовать Twitter-посты в реальном времени, как это реализовать технически, визуализировать в наглядных BI-дэшбордах для принятия data-driven решений и при чем здесь Kappa-архитектура. Еще...

Не только AirFlow: как упростить тестирование и отладку Big Data конвейеров из Spark-приложений с Dagster

Apache Spark + AirFlow – известная каждому дата-инженеру комбинация технологий Big Data для запуска сложных конвейеров обработки данных. Но совместное использование этих фреймворков ограничено недостатками AirFlow, часть из которых можно обойти с помощью Apache Livy. Однако эксплуатация AirFlow менее удобна, чем Dagster. Поэтому сегодня рассмотрим, как этот альтернативный оркестратор данных...

Как избавиться от перекосов в Apache Spark: coalesce vs repartition

Чтобы сделать обучение разработчиков Apache Spark, дата-аналитиков и инженеров Big Data еще более наглядным, сегодня рассмотрим проблему JOIN-соединений при неравномерном распределении данных по узлам кластера и способы ее решения. Читайте далее, как избавиться от перекосов и ускорить выполнение SQL-запросов в Spark-приложениях. Перекосы данных в Apache Spark: что это и чем...

Real-time аналитика больших данных о сетевом трафике с Apache Kafka и Spark

Продолжая добавлять в наши практические курсы по Apache Kafka и Spark еще больше интересных примеров, сегодня рассмотрим, как с помощью этих технологий Big Data анализировать метаданные сетевых потоков в реальном времени. В этой статье мы приготовили для вас кейс по потоковой аналитики больших данных о сетевом трафике с помощью Apache...

Что такое Apache Sedona или GeoSpark: Spark-фреймворк для обработки пространственных геоданных

Сегодня поговорим про обработку геопространственных данных с Apache Spark и рассмотрим, что такое Apache Sedona, как этот фреймворк связан с GeoSpark, какие форматы и структуры данных он поддерживает. Читайте далее про пространственные RDD, Spatial SQL-запросы и построение конвейеров обработки геоданных в облачных сервисах Amazon.   Как обработать геопространственные данные в...

Зачем вам Hue или как писать SQL-запросы к Apache Spark еще проще

Сегодня рассмотрим инструмент, который облегчает практическое использование Apache Spark, позволяя дата-аналитику и разработчику распределенных приложений быстро писать и выполнять SQL-запросы в рамках удобного веб-редактора. Читайте далее, что такое Hue, как он связан со Spark SQL и Hive, а также причем здесь Livy. Что Hue и при чем здесь Apache Livy...

Аналитика больших данных со Apache Spark SQL из внешних СУБД: про JDBC-драйверы

В этой статье рассмотрим особенности подключения Apache Spark к внешним СУБД как к источникам данных для аналитики Big Data средствами SQL-модуля этого фреймворка. Читайте далее о том, что такое JDBC-драйвер, чем источник данных JDBC отличается от сервера Spark SQL JDBC, при чем здесь RPC-фреймворк и язык описания интерфейсов Thrift, а...