Как библиотека PemJa реализует потоковый режим выполнения Flink-заданий, где UDF-функции Python выполняются в JVM, ускоряя обработку данных за счет исключения межпроцессного взаимодействия. Выполнение PyFlink-приложения в JVM Хотя Flink-приложение работает в JVM-среде, фреймворк позволяет писать код не только на Java и Scala. О том, как работает PyFlink, Python-интерфейс для Apache Flink,...
Почему можно программировать на Python для разработки JVM-приложений: как Java-фреймворки с Python API, такие как Apache Spark и Flink, транслируют Python-код, организуя межпроцессное взаимодействие. Способы трансляции Python-кода для исполнения в JVM Большинство фреймворков для разработки высоконагруженных приложений написаны на Java. Например, Apache Spark или Flink. При этом они предоставляют Python...
Зачем использовать ClickHouse для аналитики в реальном времени с агентами ИИ и как это сделать: современные вызовы внедрения LLM. Как реализовать ML-систему агентского ИИ с ClickHouse Продолжим разговор про агентский ИИ на основе LLM, когда ML-система не просто реагирует на запросы пользователя, а работает автономно, интеллектуально решая задачи без прямого...
Чем хорош агентский ИИ, какие риски и проблемы с ним связаны, и как их избежать: технические и организационные меры внедрения ML-систем в реальный бизнес. Что сдерживает внедрение агентского ИИ Мы уже писали об агентском ИИ, когда ML-система не просто реагирует на запросы пользователя, а работает автономно, интеллектуально решая задачи без...
Как Apache Beam распараллеливает потоковые и пакетные конвейеры обработки данных, добавляя собственные операции к пользовательским преобразованиям. Смотрим на примере простого пакетного конвейера с ограниченным параллелизмом. Распараллеливание операций в Apache Beam Напомним, Apache Beam представляет собой унифицированную модель определения пакетных и потоковых конвейеров параллельной обработки данных, которую можно запустить в любой...
Мы уже писали о том, как Trino работает с удаленными объектными хранилищами и файловыми системами. Сегодня поговорим о том, какие изменения выпущены в февральском релизе 2025 года, почему в Trino удалена поддержка доступа к Azure Storage, Google Cloud Storage, S3 и S3-совместимым файловым системам через Hive и что использовать вместо...
7 февраля 2025 года вышел очередной релиз ClickHouse. Знакомимся с его главными новинками: ускорение параллельного хэш-соединения, индексы MinMax на уровне таблицы, автоинкременты полей и улучшенное объединение таблиц с табличной функцией merge. Улучшение параллельного хэш-соединения в ClickHouse 25.1 В ClickHouse 25.1 добавлено 15 новых функций, 36 улучшений и 77 исправлений ошибок....
Как FLIP-304 помогает понять причину сбоя и повысить надежность Flink-приложения: обогащение типовых сообщений об ошибках пользовательскими метаданными. Зачем нужен FLIP-304 и как это позволяет дополнять сообщения об ошибках при сбоях заданий Apache Flink Хотя Apache Flink имеет встроенные механизмы обеспечения отказоустойчивости, такие как контрольные точки и точки сохранения, а также...
Особенности хранения и аналитической обработки JSON-документов в ClickHouse, MongoDB, Elasticsearch, DuckDB и PostgreSQL: объяснение бенчмаркингового теста. JSON в ClickHouse Недавно мы писали про бенчмаркинговое сравнение хранения и обработки JSON-данных в ClickHouse, MongoDB, Elasticsearch, DuckDB и PostgreSQL. В этом тесте, проведенном самими разработчиками ClickHouse, эта СУБД показала максимальную эффективность, которая обоснована...
Почему ClickHouse требует меньше места для хранения JSON-документов и быстрее выполняет аналитические запросы к ним по сравнению с MongoDB, Elasticsearch, DuckDB и PostgreSQL: бенчмаркинговый тест от разработчиков колоночной СУБД. Как Clickhouse делает быстрее агрегации в JSON-данных Хотя бенчмаркинговые тесты от вендоров редко бывают объективными, просматривать их довольно интересно. Недавно мне...