Проектирование хранилища данных с методологией Data Vault в архитектуре Lakehouse

Преимущества методологии Data Vault для проектирования архитектуры данных Lakehouse, а также лучшие практики ее использования с максимальной эффективностью для корпоративного хранилища. Принципы методологии Data Vault и их применение к проектированию DWH Существует множество различных методологий проектирования данных, которые можно использовать при разработке аналитической системы, например, модели звезды и снежинки, подходы...

Что обеспечивает высокую доступность приложений Apache Flink

Как работает Flink-приложение, из каких компонентов состоит распределенный кластер и как сделать его отказоустойчивым. Архитектура и принципы работы высокой доступности Apache Flink. Архитектура Flink-приложения: ключевые компоненты и связь между ними Перед тем, как погружаться в средства обеспечения высокой доступности Flink-приложения, вспомним базовые принципы его работы. Сам по себе Apache Flink...

Магический байт в сообщениях и реестр схем Apache Kafka: проблемы и решения

Что такое неизвестный магический байт, почему возникает эта ошибка и как предупредить такое исключение сериализации при работе с Kafka Streams, клиентами Apache Kafka и реестром схем. Что такое магический байт в сообщении Чтобы корректно обработать на стороне потребителя сообщение, считанное из Kafka, необходимо знать его формат, поскольку данные, публикуемые приложением-продюсером...

Еще 3 уязвимости Apache NiFi в 2023 году

Ранее мы уже писали об уязвимостях Apache NiFi, выявленных и устраненных в 1-ой половине 2023 года. Сегодня рассмотрим еще 3 ошибки, которые были обнаружены и исправлены в последние 6 месяцев уже уходящего года. Последние 3 уязвимости Apache NiFi во второй половине 2023 года Помимо ранее рассмотренных уязвимостей, в 2023 году...

Барьерный режим выполнения в Apache Spark и при чем здесь глубокое обучение

Что такое барьерный режим выполнения в Apache Spark, чем он отличается от вычислительной модели MapReduce, как связан с глубоким машинным обучением и где используется на практике. Что такое барьерный режим выполнения в Apache Spark Способ выполнения заданий Spark определяется режимом выполнения приложения, заданным на уровне фреймворка. На платформе. Именно от...

Параллельное выполнение задач в DAG Apache AirFlow: практический пример

Сегодня на практическом примере посмотрим, как запускать в DAG Apache AirFlow параллельное исполнение нескольких задач, применим пару лучших практик реализации ETL-конвейера для работы с PostgreSQL, а также разберем неоднозначности программного добавления соединений с внешними системами. Постановка задачи Предположим, необходимо получить аналитику по продажам товаров интернет-магазина, выгрузив данные из PostgreSQL в...

Возможности Apache Flink для разработчика: 3 API фреймворка

Какие возможности Apache Flink предоставляет разработчику и как их использовать: краткий обзор существующих API и потоковых примитивов. Потоковые примитивы и низкоуровневый API Будучи популярным фреймворком для stateful-вычислений над неограниченными и ограниченными потоками данных, Apache Flink предоставляет несколько API на разных уровнях абстракции и предлагает специальные библиотеки для различных сценариев. На...

Как повысить надежность кластера Apache Kafka: сбои публикации и стратегии их устранения

Какие меры принять администратору кластера Apache Kafka, чтобы повысить надежность потоковой экосистемы, использующей эту распределенную платформу как средство интеграции различных приложений. Сбои в потоковой экосистеме и способы их устранения Хотя Apache Kafka считается высоконадежной системой благодаря множеству встроенных механизмов отказоустойчивости, таким как репликация и перевыборы лидера. Впрочем, это не исключает...

Под капотом задания Apache Flink: 3 этапа преобразования

Как планируются и исполняются задания Apache Flink: от пользовательского Java-кода до физического исполнения, а также отслеживание статуса задания в JobManager. Подробности преобразований с примерами кода. 3 этапа преобразования задания Apache Flink Задание Apache Flink проходит несколько этапов перед своим физическим выполнением: сперва пользовательский код преобразуется в потоковый граф (Stream Graph);...

Все успешно: файл _SUCCESS в рабочих процессах Apache Spark

Когда и зачем Spark-приложение создает файл _SUCCESS, почему в нем нет данных, как его использовать, можно ли обойтись без него и как это сделать. Пример запуска PySpark-приложения в Google Colab. Когда и зачем Spark-приложение создает файл _SUCCESS В Apache Spark при выполнении операций записи с использованием таких методов, как saveAsTextFile(),...

Apache Kafka vs Streams и Pub/Sub в Redis

Как key-value СУБД Redis может работать с потоковыми данными и чем Pub/Sub и Streams отличаются от Apache Kafka. Сравнение и рекомендации по использованию. Потоковое сохранение данных Redis Будучи очень быстрым key-value хранилищем, NoSQL-СУБД Redis часто используется в качестве слоя кэширования для разгрузки основной базы данных. В отличие от многих других...

SQL-запросы к Clickhouse в онлайн-песочнице: практический пример

Насколько быстро ClickHouse выполняет SQL-запросы: тестирование СУБД в открытой онлайн-песочнице. Примеры запросов и время их выполнения. Работа с онлайн-песочницей Clickhouse: выполнение SQL-запросов Будучи реляционной аналитической СУБД, ClickHouse позволяет обрабатывать гигабайты данных в реальном времени. Архитектурные особенности, благодаря которым реализуется такая скорость, мы недавно разбирали здесь. Чтобы оценить это на практике,...

Greenplum vs Clickhouse: сравнение аналитических СУБД для Big Data

Сходства и различия популярных реляционных аналитических СУБД с открытым исходным кодом: что общего у Greenplum с ClickHouse, чем они отличаются, что и когда выбирать. Greenplum и Clickhouse: обзор возможностей для аналитики больших данных Обе СУБД являются реляционными и относятся к классу OLAP-систем, т.е. ориентированы на аналитические варианты использования, т.е. чтение...

Долгожданный релиз Apache NiFi 2.0: что нового?

Недавно мы писали об анонсированных новинках Apache NiFi 2.0. Наконец, 25 ноября 2023 года этот долгожданный мажорный релиз опубликован. Знакомимся с главными новостями версии 2.0, в которой более 900 обновлений, включая новые функции, улучшения и исправления ошибок. ТОП-7 новинок в Apache NiFi 2.0 Прежде всего, важной новинкой NiFi 2.0 является...

Кластерный анализ графов с медоидами: алгоритм k-medoids

Что такое алгоритм k-medoids, чем он отличается от k-means и как этот метод кластеризации применяется для анализа графов: принципы и инструменты. Что такое медоид и как устроен алгоритм кластеризации k-medoids Кластеризация — это метод машинного обучения для поиска кластеров или сообществ в наборе данных. Цель в том, чтобы найти кластеры,...

Оптимизация использования RocksDB и параллелизма в Apache Flink

Почему хранить состояния Flink-приложений лучше на локальных SSD-диски, а не на твердотельных накопителях с удаленной файловой системой NFS или HDFS, зачем отключать блочный кэш RocksDB и как настроить параллелизм заданий. Проблемы сохранения состояния в RocksDB и способы их решения Как мы уже упоминали здесь, key-value хранилище RocksDB является самым популярным...

Как язык разработки влияет на стратегию партиционирования в Apache Kafka: тонкости хэширования

Как работает распределение сообщений по разделам топика Kafka с явно заданным ключом партиционирования и на что влияет язык разработки приложения-продюсера при использовании этой стратегии. 3 стратегии распределения сообщений по разделам в Apache Kafka В Apache Kafka единицей параллелизма выступает раздел топика. Используя несколько разделов, можно распределять нагрузку на брокеров в...

Параметры настройки для масштабирования Apache AirFlow

Ранее мы писали про проблемы повышения производительности Apache AirFlow и каковы их причины. В продолжение этой темы сегодня рассмотрим, как настроить этот ETL-оркестратор, чтобы избежать подобных ситуаций и масштабировать кластер в соответствии с нагрузкой. Настройка AirFlow на уровне среды Как мы уже отмечали, Apache AirFlow отлично масштабируется, обеспечивая высокую производительность...

Кибербезопасность в MLOps: угрозы и лучшие практики

Почему безопасность ML-систем становится все более важным вопросом и как ее обеспечить: MLOps-подходы, практики и технологии защиты данных, моделей машинного обучения, а также вычислительных и инфраструктурных конвейеров. Защита данных для машинного обучения В связи с активным внедрением система машинного обучения в производственное использование, вопрос безопасности становится все более актуальным. ML-системы...

Отметки времени событий для безопасности архитектуры данных Lakehouse

Как отметки времени о событиях в архитектуре данных Lakehouse позволяют обеспечить безопасность Delta Lake: примеры извлечения и преобразования, а также лучшие практики. Почему отметки времени в логах системных событий так важны для архитектуры больших данных Архитектура Lakehouse построена на открытых стандартах и ​​API, которые позволяют сочетать ACID-транзакции и управление данными...