Сетевые буферы в Apache Flink: что это такое и при чем здесь контрольные точки

Как Apache Flink обеспечивает стабильно высокую пропускную способность потоковой обработки данных с помощью сетевых буферов и контрольных точек, каковы возможности и ограничения этих механизмов и какие конфигурации надо настроить для их эффективного использования. Зачем Apache Flink нужны сетевые буферы Каждая запись в Flink отправляется следующей подзадаче вместе с другими записями...

Что такое Apache Flink Stateful Functions и как это использовать?

Зачем Apache Flink очередной API для создания распределенных приложений с отслеживанием состояния, чем он полезен и при чем здесь Kubernetes: ликбез по Stateful Functions. Apache Flink Stateful Functions Stateful Functions в Apache Flink – это API, который упрощает создание распределенных приложений с отслеживанием состояния с помощью среды выполнения, созданной для...

Почему производительность Apache Flink выше Spark: 5 главных причин

Из-за чего приложения Flink работают быстрее Spark: разница в моделях обработки данных, управлении памятью, методах оптимизации, дизайне API и личный опыт использования. Apache Flink vs Spark: сходства и отличия Apache Spark и Flink считаются наиболее популярными фреймворками разработки распределенных приложений в области Big Data. Они достаточно похожи, что мы ранее...

2 режима развертывания приложений Apache Flink: что и когда выбирать

Какие режимы развертывания заданий поддерживает Apache Flink и чем они отличаются. Достоинства и недостатки режима сеанса и режима приложения, а также варианты использования. Особенности развертывания приложения Apache Flink Режим развертывания определяет, с каким уровнем изоляции ресурсов задание Flink будет выполняться в кластере. Напомним, выполнение задания Apache Flink включает 3 объекта:...

Как Apache Flink работает с файловыми системами

Какие файловые системы поддерживает Apache Flink: средства взаимодействия с файлами, хранящимися локально или в объектных хранилищах HDFS, S3 и GCS. Особенности работы с файловыми системами в Apache Flink Apache Flink имеет собственную абстракцию файловой системы через класс org.apache.flink.core.fs.FileSystem. Эта абстракция обеспечивает общий набор операций и минимальные гарантии для различных типов...

Обогащение потока данных в Apache Flink: 3 способа добавить эталонные значения

Что такое потоковое обогащение данных, зачем это нужно и как оно реализуется в Apache Flink. Проблемы и решения предварительной загрузки справочных данных в память, синхронного и асинхронного поиска в источнике по каждой записи и организация потоковой передачи событий. 3 способа загрузить эталонные (справочные) данных в Apache Flink для обогащения потока...

Под капотом PyFlink: как работает Python-интерфейс Apache Flink

Как и большинство Big Data фреймворков, Apache Flink имеет Python API, позволяя разработчикам высоконагруженных потоковых приложений писать код на этом популярном языке программирования. Однако, Flink-задание выполняется в JVM, поэтому сам фреймворк транслирует Python-код в Java. Разбираемся, в чем особенности этого многоступенчатого процесса. Из Python в Java: как устроен API PyFlink...

Как ускорить выполнение заданий Apache Flink с помощью спекулятивного выполнения

Что такое спекулятивное выполнение заданий в Apache Flink, какой планировщик его поддерживает, какие конфигурации нужно настроить для его эффективного использования и зачем при этом переопределять поведение генератора разделений потокового источника данных. Что такое спекулятивное выполнение заданий Apache Flink Распределенная природа Apache Flink приводит к тому, что приложения, созданные с помощью...

Как ускорить JOIN-запросы с перекосом данных: мини-пакетная агрегация в Apache Flink SQL

Почему запросы Flink SQL перестают работать эффективно при больших объемах несбалансированном распределенных данных и как это исправить с помощью мини-пакетной агрегации. Что такое MiniBatch, как это работает и чем может опасно. Перекос данных по ключу группировки в Apache Flink Flink SQL — это мощный инструмент, объединяющий пакетную и потоковую обработку...

Машинное обучение с Apache Flink: основные концепции ML-библиотеки

Как построить конвейер машинного обучения с помощью библиотеки Flink ML, из каких компонентов она состоит и как работает, а также что позволяет объединить алгоритмы потоковой обработки данных Apache Flink с ML-моделями. Что такое Flink ML Помимо MLeap, библиотеки сериализации для моделей машинного обучения, Apache Flink также включает Flink ML —...

Гибридный режим пакетных shuffle-операций в Apache Flink

Что не так с планированием задач shuffle-операций, какие проблемы пакетной обработки данных устраняет введение гибридной перетасовки в Apache Flink 1.16 и как работает этот режим Hybrid Shuffle. Что такое режим гибридного перемешивания в Apache Flink В версии Apache Flink 1.16, о которой мы писали здесь, был впервые представлен режим гибридной...

Создание и тестирование источника данных в Apache Flink

Недавно мы писали про источники данных Apache Flink. Сегодня рассмотрим, как создать и протестировать собственный источник данных для их обработки в распределенном приложении. Создание своего источника данных в Apache Flink Напомним, источник данных в Apache Flink состоит из трех основных компонентов: Split, SplitEnumerator и SourceReader. Splits — это часть данных,...

Из Kafka во Flink: пишем Python-приложение

Сегодня рассмотрим, как написать и запустить в Google Colab свое Python-приложение считывания данных из топика Kafka с помощью коннектора FlinkKafkaConsumer из библиотеки pyflink.datastream.connectors  и почему заставить его работать оказалось не так просто. Использование FlinkKafkaConsumer для доступа к Kafka из Flink приложения Недавно я показывала, как написать PyFlink-скрипт считывания данных из...

Под капотом табличного хранилища Apache Flink

Год назад мы уже писали, как в Apache Flink появились табличные хранилища и зачем они нужны. Сегодня заглянем под капот Flink Table Store, познакомившись со структурой файлов и каталогов. Архитектура и принципы работы Flink Table Store Поскольку Apache Flink объединяет пакетную обработку данных с потоковой, для работы этого универсального stateful-механизма...

Тестовые наборы для проверки UDF-функций Flink-приложения

Мы уже писали про тестирование приложений Apache Flink, используя SQL-клиентов, Table API, тестовые наборы операторов и режим локального мини-кластера. Сегодня рассмотрим, как с помощью тестовых наборов тестировать UDF-функции, использующих состояние и таймеры. Модульное тестирование UDF-функций Flink-приложения с помощью тестовых наборов При работе с Apache Flink разработчики часто сталкиваются с проблемами при...

Как на лету обогатить поток данных Flink с использованием внешнего API

Обогащение потока данных информацией из внешнего API без остановки вычислений: 3 способа реализовать это средствами Apache Flink на примере сервиса геолокации. Зачем обогащать потоковые данные через внешний API и как это сделать для Flink-приложения? Иногда необходимо обогатить потоки данных, т.е. дополнить потоковые данные в реальном времени, т.е. на лету, не...

Мониторинг загрузки ЦП для приложений Apache Flink с Flame Graph

Мы уже писали о важности отслеживания системных метрик приложений Apache Flink и RocksDB, используемой этим фреймворком для хранения состояния stateful-заданий. Сегодня рассмотрим, как отследить потребление ресурсов ЦП средствами встроенной визуализации Flame Graphs. Что такое Flame Graph и зачем это нужно? Помимо мониторинга длительности выполнения задач и заданий, дата-инженерам и разработчикам...

Журнал изменений для контрольных точек в Apache Flink

Что не так с механизмом контрольных точек в Apache Flink, и как журнал изменений состояния справляется с ростом сквозной задержки в потоковой обработке данных средствами этого фреймворка. Проблемы контрольных точек в Apache Flink Одной из наиболее важных характеристик систем потоковой обработки данных является сквозная задержка, которая в Apache Flink зависит...

Знакомство с DataStream API в Apache Flink: запуск PyFlink-скрипта в Google Colab

Как использовать DataStream API в Apache Flink: пишем потребителя из Kafka и запускаем скрипт в Google Colab. StreamExecutionEnvironment и методы коллекций потока данных в PyFlink. DataStream API в Apache Flink: PyFlink в Google Colab для работы с Kafka Apache Flink предоставляет множество возможностей разработчикам на Scala и Java, а также...

Потоковые режимы коннектора Flink SQL к Kafka

Как не запутаться в многообразии коннекторов к Kafka, доступных во Flink Table API, и выбрать наиболее подходящий для своего сценария применения. Разница между Append Mode и Upsert-режимом коннектора Flink SQL к Kafka. 2 режима работы коннектора Kafka в Apache Flink Apache Flink поставляется с универсальным соединителем Kafka, который поддерживает последнюю...