Роль Tungsten в Apache Spark

Что такое Tungsten, зачем он нужен в Apache Spark и как этот проект устраняет узкие места вычислительного движка, чтобы повысить его производительность и эффективность утилизации ресурсов за счет приближения JVM к bare metal. Рассматриваем самые важные для разработчика распределенных приложений особенности и разбираемся, при чем здесь вольфрам и почему с...

Вместо Git и Python: MLOps для разработки и развертывания ML-систем

Что не так с традиционными методами и инструментами разработки ПО для систем машинного обучения и как MLOps решает эти инженерные проблемы ML. Почему не стоит размещать файлы моделей Machine Learnig и датасеты в Git, а также зачем MLOps-инженеру решать вопросы архитектуры и управляться с Kubernetes. MLOps вместо Git-репозиториев Традиционные рабочие...

Защита авторских прав и Школа Больших Данных

Ровно год назад мы выиграли суд против АНО ДПО "Учебный центр "Микроинформ", о чем подробно рассказывали здесь. Спустя 12 месяцев, 26 мая 2022 года Арбитражный суд г. Москвы снова удовлетворил иск ООО "Учебный центр "Коммерсант", в составе которого находится наша Школа Больших Данных, к Частному образовательному учреждению дополнительного образования "Учебно-консультационный центр...

Табличное хранилище Apache Flink

Что такое табличное хранилище Apache Flink, зачем это нужно и почему оно пока не рекомендуется для применения в реальных проектах. Краткий обзор Apache Flink Table Store 0.1.0 для дата-инженеров и разработчиков распределенных приложений. Что такое Flink Table Store и зачем это нужно Уже более полугода, с релиза 1.14, выпущенного в...

Детективная история про SCR-конфигурации HDFS в региональных серверах Apache HBase

В этой статье для обучения дата-инженеров и администраторов кластера Apache HBase разберем, почему региональные сервера могут работать некорректно при высокой нагрузке и при чем здесь SCR-конфигурация файловой системы Hadoop. Что такое Short-Circuit Read в HDFS и почему оно может снижать скорость потокового чтения в приложениях Spark Streaming. Постановка задачи: проблема...

5 достоинств и 3 недостатка скриптовых компонентов Apache NiFi

В этой статье для дата-инженеров разберемся, что такое NiFi Scripted Components и как они заполняют пробел между скриптами и пользовательскими компонентами: процессорами, контроллерами, сообщениями и средствами их чтения/записи. Рассмотрим примеры скиптовых процессоров и сервисов, а также определим реальные достоинства и недостатки этих компонентов. Почему просто скриптовых процессоров Apache NiFi недостаточно?...

Как связать Apache Kafka с Hive: разбор интеграционного коннектора

Сегодня рассмотрим, кому и зачем нужно связывать Apache Hive с Kafka, каким образом реализуется эта интеграция, как получить доступ к данным из платформы потоковой передачи событий средствами SQL-on-Hadoop, при чем здесь режимы Kerberos и механизмы безопасности Ranger. Зачем нужна интеграция Apache Hive с Kafka Необходимость связать Apache Hive с Kafka...

Новинки Apache Flink 1.15: краткий обзор

Весна богата на новые релизы: в начале мая 2022 года вышел Apache Flink 1.15. Рассказываем, что нового в свежем выпуске: краткий обзор самых полезных фич для разработчика распределенных приложений, а также интересные изменения, исправления ошибок и улучшения для дата-инженера. Scala под капотом и спецификация REST API по стандарту OpenAPI Apache...

Apache Airflow 2.3: что нового?

30 апреля 2022 года вышел новый релиз Apache Airflow, который содержит более 700 коммитов с предыдущей версии 2.2.0 и включает 50 новых функций, 99 улучшений, 85 исправлений ошибок и несколько изменений в документации. Разбираемся, что особенно важно для дата-инженера в Apache Airflow 2.3.0. ТОП-7 главных фич Apache AirFlow 2.3.0: краткий...

Как быстро и безопасно удалять брокеры из кластера Kafka: решение от Confluent

Сегодня рассмотрим важную для обучения администраторов кластера Apache Kafka тему про удаление брокеров. Что происходит, когда администратор удаляет брокер Kafka из кластера, какие сложности при этом могут возникнуть и как с ними справляется решение на базе платформы Confluent. Как вручную удалить брокер Kafka из кластера: краткий guide администратора На первый...

ТОП-5 проблем с данными в ML-системах и MLOps для их устранения

Что не так с датасетами в системах машинного обучения, с какими трудностями сталкиваются аналитики, инженеры данных и специалисты по Data Science при внедрении MLOps, почему важна согласованность различных информационных хранилищ, зачем и как внедрять оперативный мониторинг за качеством данных. Разбираем трудности разработки и поддержки Machine Learning в production. 5 проблем...

Оконные функции PySpark в Google Colab: пара примеров

Специально для обучения начинающих аналитиков данных и дата-инженеров сегодня рассмотрим примеры выполнения простых SQL-запросов и оконных функций в Apache Spark на Google Colab. Как быстро проанализировать датафрейм из CSV-файлов с помощью нескольких строк на PySpark. Запуск и использование PySpark в Google Colab Предположим, необходимо определить потенциальный доход от проведения обучающих...

Зачем вам Data Importer для Neo4j: краткий обзор апрельских обновлений

Сегодня в рамках продвижения нашего курса по графовой аналитике больших данных в бизнес-приложениях, рассмотрим новый инструмент популярной графовой СУБД Neo4j  для загрузки данных - Data Importer. Что это такое, как работает, чем полезно специалисту по Data Science и зачем обновлять его до последней версии. Что такое Neo4j Data Importer Графовая...

Анализ данных Youtube в реальном времени с Apache NiFi, Kafka и Spark Streaming

В этой статье для дата-инженеров рассмотрим пример конвейера анализа потокового видео с Youtube-каналов на Kafka, Spark Streaming и Elasticsearch c Kibana, связанных через процессоры Apache NiFi. Постановка задачи: ETL-конвейер анализа потоковых данных с Youtube Потоковые данные непрерывно генерируются тысячами источников, которые отправляют записи одновременно и в небольших размерах (порядка килобайт)....

Управление перемешиванием данных во время выполнения Flink-приложений

Мы уже писали про динамическое изменение правил фильтрации без перезапуска Flink-приложений. В продолжение этой темы в рамках продвижения нашего нового курса по потоковой обработке данных  помощью Apache Flink, сегодня рассмотрим, как избежать неравномерного распределения данных во время выполнения программы. Больше 3-х не собираться: бизнес-правила и динамика разделения данных Перекос или...

Вторая клиентская конференция Arenadata – май 2022

В четверг, 26 мая 2022, компания Arenadata, российский разработчик линейки решений для хранения и аналитики больших данных на базе открытых дистрибутивов, проводит 2-ю конференцию для клиентов и партнеров.  В рамках офлайн-события с онлайн-трансляцией специалисты по продуктам Arenadata и приглашенные эксперты рассмотрят ряд актуальных вопросов по внедрению технологий Big Data в...

5 способов организации ETL-процессов с Greenplum: команды и утилиты

Мы уже рассматривали, как загрузить в Greenplum большие объемы данных. В продолжение этой важной для обучения дата-инженеров темы, сегодня разберем еще несколько инструментов, решающих задачу организации ETL-процессов с этой MPP-СУБД. ETL-инструменты PostgreSQL Хотя Greenplum может хранить и обрабатывать огромные наборы данных на уровне петабайт, эта СУБД не генерирует их самостоятельно,...

Apache Kafka в Walmart для масштабируемого пополнения запасов в реальном времени

Проблема своевременного пополнения товарных запасов актуальна для любого ритейлера. Разбираемся, как торговый гигант США Walmart построил свою платформу планирования и пополнения продукции в реальном времени на базе Apache Kafka: ключевые требования к системе, архитектура и принципы работы, настройка конфигураций продюсеров и потребителей. Постановка задачи: пополнение товарного запаса в реальном времени...

CI/CD для дата-инженера: разработка DAG и развертывание в среде Airflow с GitLab

Интеграция Apache Airflow с инструментами CI/CD является одной из лучших практик современной дата-инженерии, о чем мы недавно писали. Читайте далее, зачем нужно управлять кодом DAG с помощью популярных систем управления версиями и как это сделать на примере GitLab CI/CD. Сложности управления DAG в разных средах AirFlow Apache Airflow считается наиболее...

Feature Store на Apache HBase с Phoenix, RonDB и Kafka: кейс Dream11

Современные ML-системы представляют собой сложные комплексные платформы из множества компонентов, одним из которых является хранилище фичей для моделей машинного обучения. Индийская gamedev-компания Dream11 делится своим опытом, как построить такое Feature Store на базе Apache HBase с Phoenix, а также RonDB и Kafka. Что такое хранилище фичей и зачем это Dream11...