Чем Scala лучше Java для разработки Spark-приложения: ТОП-5 преимуществ

Как разница между Scala и Java отражается на работе Spark-приложения, почему код на Scala работает быстрее и когда выбирать этот язык программирования для разработки приложений аналитики больших данных. Scala vs Java: ключевые отличия Хотя Apache Spark позволяет разработчику писать код на нескольких языках программирования (Scala, Java, R, Python), сам фреймворк...

Apache Spark 3.5.0: что нового?

13 сентября 2023 года вышел Apache Spark 3.5. Знакомимся с самыми важными новинками свежего релиза: расширения Spark Connect и SQL, поддержка DeepSpeed, улучшения потоковой передачи и свежие UDF-функции Python. ТОП-5 новинок Apache Spark 3.5.0 В Apache Spark 3.5. добавлено много исправлений и улучшений, а также реализованы новые функции. Наиболее интересными...

Что такое SPIP: 4 предложения по улучшению Apache Spark

Сегодня рассмотрим, какие улучшения Apache Spark опубликованы в 2023 году и как подать свое предложение по улучшению самого популярного вычислительного движка в стеке Big Data. Что такое SPIP и как подать свое предложение по улучшению фреймворка В любом продукте помимо ошибок есть также предложения по улучшению. В Apache Spark они...

Apache AirFlow vs Spark в Databricks для оркестрации рабочих процессов

Чем отличается оркестрация ETL-процессов в Databricks и Apache AirFlow: принципы работы, достоинства и недостатки, а также что выбирать дата-инженеру для решения практических задач. Apache AirFlow vs Spark в Databricks: сходства и отличия Облачная платформа Databricks, основанная на Apache Spark, предлагает пользователям единую среду для создания, запуска и управления различными рабочими...

Программируй на английском: ИИ-SDK для PySpark от Databricks

Как получать результаты обработки данных с помощью Apache Spark, адресуя ИИ бизнес-запросы на английском языке: знакомимся с English SDK от Databricks. Настоящий Low Code с PySpark-AI. English SDK for Apache Spark и PySpark-AI: как это работает Большие языковые модели (LLM, Large Language Model), основанные на генеративных нейросетях, применимы не только...

Отладка PySpark-приложений: журнал регистрации событий

Сегодня рассмотрим особенности отладки PySpark-приложений: как Python-код исполняется в JVM, какие сложности возникают у разработчика при тестировании и исправлении ошибок в программе, написанной локально и запускаемой в кластере, а также как настроить вывод событий в лог-файл. Запуск и выполнение PySpark-кода Хотя Apache Spark и имеет Python API, позволяя писать код...

Как проект Lightspeed от Databricks делает Apache Spark еще быстрее: асинхронное управление смещениями

В прошлом году Databricks выпустили новый проект для ускорения потоковой передачи в Apache Spark. Сегодня рассмотрим, как именно Lightspeed сокращает задержку в операционных рабочих нагрузках Structured Streaming с помощью асинхронного управления смещением. Операционные рабочие нагрузки и что их тормозит в Apache Spark Structured Streaming Рабочие нагрузки потоковой передачи можно разделить...

Регулярные выражения в Apache Spark

Каждый дата-инженер и аналитик данных активно использует регулярные выражения для поиска значений в тексте по заданному шаблону. Сегодня рассмотрим, как это сделать с функциями regexp_replace(), rlike() и regexp_extract в Apache Spark на примере небольшого PySpark-приложения. Как работает функция regexp_replace() Регулярным выражением называется последовательность символов, задающая шаблон соответствия в тексте. Например,...

Алиасы столбцов и параметризованные SQL-запросы в Apache Spark 3.4

Чем полезны новые фичи Apache Spark SQL, выпущенные в релизе 3.4. Разбираемся с псевдонимами столбцов и параметризованными SQL-запросами на простых примерах, запуская Spark-приложение в Google Colab. Псевдонимы столбцов Хотя с момента выхода Apache Spark 3.4 в апреле 2023 года, о чем мы писали здесь, прошло почти полгода, возможность ссылаться на...

Horovod на Databricks для MLOps в глубоком обучении

Из чего состоит инфраструктура глубокого обучения Databricks и как масштабировать Deep Learning для нескольких графических процессоров или распределенных вычислений. Знакомимся с очередным MLOps-инструментом под названием Horovod. Что Horovod и как его использовать в Databricks Мы уже писали, почему глубокому обучению не обойтись без MLOps-инструментов, реализующих идеи DevOps для автоматизации разработки,...

Поиск по сайту