Школа Больших Данных проводит еще один бесплатный митап для архитекторов платформ данных, инженеров данных, разработчиков, DevOps-, DataOps-инженеров и просто интересующихся о модели Dataflow, API Apache Beam, а также паттернах управления приложениями распределенной обработки данных на Kubernetes. Apache Beam – унифицированный API с открытым исходным кодом, реализующий модель Dataflow, предоставляет единый...
Школа Больших Данных проводит очередной бесплатный митап для архитекторов платформ данных, инженеров данных, разработчиков, DevOps-, DataOps-инженеров и просто интересующихся о моделях и ключевых паттернах управления распределенными приложениями Apache Spark и Apache Flink на Kubernetes. Apache Spark и Flink - это популярные Big Data фреймворки с открытым исходным кодом для распределённой...
Что такое Dynamic Partition Pruning в Spark SQL, как работает этот метод оптимизации пакетных запросов, зачем его использовать в задачах аналитики больших данных, и каким образом повысить эффективность его практического применения. Что такое Dynamic Partition Pruning и зачем это нужно в Spark SQL Параллельная обработка данных в Apache Spark обеспечивается...
Почему пользовательские функции лучше применять как можно реже, каковы их возможности и ограничения: краткий обзор особенностей разработки и эксплуатации UDF в Apache Spark SQL, ksqlDB, Flink SQL, Greenplum и ClickHouse. Чем полезны и опасны пользовательские функции в обработке больших данных? Пользовательские функции (User-Defined Functions, UDF) позволяют разработчику расширить возможности фреймворка,...
Как устроен потоковый запрос Spark Structured Streaming на уровне кода: интерфейсы, их методы и как их настроить, создание и запуск StreamingQuery. Создание потокового запроса в Spark Structured Streaming Хотя структурированная потоковая передача Spark основана на SQL-движке этого фреймворка, в ней гораздо больше сложных абстракций. Например, с точки зрения программирования потоковый...
Почему параллельное выполнение заданий в Apache Spark зависит от языка программирования и как можно обойти однопоточную природу Python в PySpark. Что не так с параллельным выполнением заданий PySpark и как это исправить? Apache Spark позволяет писать распределенные приложения благодаря инструментам для распределения ресурсов между вычислительными процессами. В режиме кластера каждое...
Как размер пакета, режим вывода и интервал срабатывания триггера потоковой обработки влияют на скорость вычислений в приложении Apache Spark Structured Streaming и как настроить эти параметры. Размер пакета при потоковой обработке данных в Spark Streaming Хотя скорость обработки данных средствами Apache Spark Streaming зависит от многих факторов, включая саму структуру...
Что общего у клиент-серверной архитектуры Spark Connect с JDBC-драйвером подключения к БД, как взаимодействуют клиент и сервер по gRPC, как подключиться к серверу и указать обязательность поля в схеме proto-сообщения. Как работает Spark Connect О том, что представляет собой Spark Connect и зачем нужен этот клиентский API, позволяющий удаленно подключаться...
3 июня 2024 года вышел предварительный релиз Apache Spark 4.0. Эта версия еще не считается стабильной и предназначена только для ознакомления. Поэтому даже полноценные release notes по ней пока отсутствуют. Тем не менее, сегодня познакомимся с наиболее интересными фичами этого выпуска: новый тип данных VARIANT, API источника данных Python и...
Для чего смотреть планы выполнения запросов при работе с API pandas в Spark и как это сделать: примеры использования метода spark.explain() и его аргументов для вывода логических и физических планов. Разбираем на примере PySpark-скрипта. API pandas и физический план выполнения запроса в Apache Spark Мы уже писали, что PySpark, API-интерфейс...