Мы уже писали о сложностях развертывания Apache Kafka на платформе управления контейнерами Kubernetes. Некоторые из этих проблем отлично решает KubeMQ – брокер очередей сообщений на Kubernetes. Зачем нужна очередная служба обмена данными, как она устроена и при чем здесь Kafka. Проблемы Kafka на Kubernetes и не только Сложная архитектура современных...
Сегодня рассмотрим, как организовать полностью сохраняемый сервис Apache NiFi с помощью Docker, чтобы обеспечить безопасность конвейеров и потоков данных при изменении конфигураций и перезапуске служб. А также разберем, как дата-инженеру и администратору кластера NiFi запустить его на Kubernetes. Проблемы масштабирования и отказоустойчивости Apache NiFi Благодаря наличию веб-GUI, множеству готовых процессоров...
Сегодня разберем кейс платформы онлайн-обучения Udemy по разработке собственной системы потоковой аналитики больших данных о событиях пользовательского поведения на Apache Kafka, Hive и сервисах Amazon. Про требования к инфраструктуре отслеживания событий и их реализацию с помощью Apache Kafka, Hive, Kubernetes, AWS S3 и EMR, а также чем AVRO лучше Protobuf....
Чтобы сделать наши курсы по Apache NiFi для дата-инженеров еще более полезными, сегодня рассмотрим новые возможности последнего релиза Cloudera Flow Management 2.1.1 на базе этого фреймворка. Выпущенная в апреле 2021 года, платформа Cloudera Flow Management в составе публичного и частного облака предоставляет Apache NiFi версии 1.13.2, включая дополнительные компоненты, а...
В рамках нового курса Эксплуатация Apache NIFI, сегодня разберем особенности развертывания этого маршрутизатора потоков Big Data на платформе управления контейнерными приложениями Kubernetes. Советы дата-инженерам, как сократить расходы на AWS, избежать сбоев узлов и потерь данных, обеспечить безопасность и автоматическое масштабирование облачного кластера Apache NiFi в Amazon EKS, а также зачем...
Продолжая разбирать особенности разработки потоковых приложений Apache Flink, сегодня рассмотрим проблему падения пропускной способности задания из-за встроенного хранилища состояний RocksDB и ее зависимость от производительности дисков. Вас ждет настоящая детективная история о том, как важно заглядывать под капот облачных кластеров и настраивать конфигурации своих stateful-приложений потоковой аналитики больших данных с...
Продолжая сравнивать Apache AirFlow с Dagster, сегодня рассмотрим особенности развертывания и эксплуатации этих оркестраторов ETL-процессов и конвейеров обработки данных. Читайте далее о плюсах изоляции процессов, отделения системных служб от пользовательского кода, сложностях планирования и запуска задач, а также способах их решения с помощью современных инструментов дата-инженера. В изолятор: как развернуть...
Совмещение Airflow с Kubernetes уже становится стандартом де-факто для дата-инженеров. Недавно мы рассказывали про 3 популярные среды развертывания и сопровождения этого ETL-фреймворка в Kubernetes. Продолжая эту тему, сегодня рассмотрим, какие операторы использовать для контейнерного запуска batch-задач, а также поговорим о том, как Docker-образы помогут решить проблему изменения версий Python и...
Для практического использования Apache Airflow в production дата-инженеру необходимо не только обучение основам работы с этим фреймворком, но и знания о базовой инфраструктуре его развертывания. Поэтому сегодня поговорим о 3-х популярных средах для развертывания и сопровождения этого ETL-фреймворка: Astronomer, Google Cloud Composer и Amazon Managed Workflows, разобрав их основные возможности...
Продолжая разговор про оптимизацию приложений Apache Spark в Kubernetes, сегодня разберем, как сократить расходы на облачный кластер с помощью спотовых узлов. А в качестве практического примера рассмотрим кейс компании Weather2020, дата-инженеры которой смогли всего за 3 недели развернуть террабайтные ETL-конвейеры в AWS с AirFlow и Spark на Kubernetes без глубокой...