Вместо Git и Python: MLOps для разработки и развертывания ML-систем

Что не так с традиционными методами и инструментами разработки ПО для систем машинного обучения и как MLOps решает эти инженерные проблемы ML. Почему не стоит размещать файлы моделей Machine Learnig и датасеты в Git, а также зачем MLOps-инженеру решать вопросы архитектуры и управляться с Kubernetes. MLOps вместо Git-репозиториев Традиционные рабочие...

Как быстро и безопасно удалять брокеры из кластера Kafka: решение от Confluent

Сегодня рассмотрим важную для обучения администраторов кластера Apache Kafka тему про удаление брокеров. Что происходит, когда администратор удаляет брокер Kafka из кластера, какие сложности при этом могут возникнуть и как с ними справляется решение на базе платформы Confluent. Как вручную удалить брокер Kafka из кластера: краткий guide администратора На первый...

Отказы в Kafka-приложениях и FMECA-анализ: определить и устранить сбои

Хотя Apache Kafka является надежной платформой потоковой обработки событий, что особенно важно для распределенных приложений, отказы случаются и в ней. Сегодня разберем важную для обучения разработчиков и дата-инженеров тему про идентификацию и обработку отказов в Kafka-приложениях с помощью простого, но эффективного метода теории надежности. Что такое  FMECA-анализ, как его проводить...

ТОП-3 практики оркестрации данных с Apache AirFlow: советы Astronomer

Сегодня рассмотрим несколько рекомендаций по построению масштабной и устойчивой экосистемы интеграции корпоративных данных на базе Apache AirFlow от компании Astronomer, которая активно способствует продвижению и коммерциализации этого популярного инструмента дата-инженерии. Как организовать эффективную маршрутизацию рабочих процессов с пакетным ETL-оркестратором: 3 лучших практики. Стандартизация сред разработки и промышленной эксплуатации с Kubernetes...

MLOps на Python и не только: кейс банка «Открытие»

Чтобы сделать наши курсы для специалистов в области Data Science и ML-инженеров еще более полезными, сегодня рассмотрим, как организовать сквозной CI/CD-конвейер разработки и развертывания системы машинного обучения в соответствии с MLOps-концепцией на 4-х популярных Python-инструментах: MLflow, DVC, Airflow, ClearML. А в качестве примера практической реализации этой идеи разберем кейс банка...

Автосоздание CLI в Apache Airflow с Python Fire вместо Python-оператора

Почему следует избегать PythonOperator в конвейере обработки пакетных данных на Apache Airflow и что использовать вместо этого оператора для описания задач DAG. Когда лаконичный CLI лучше наглядного GUI, где и как применять библиотеку Python Fire для оркестрации, а также планирования запуска batch-заданий. Зачем нам CLI или что не так с PythonOperator...

Istio для Apache Airflow в Kubernetes: проблемы и решения

Запуск Apache Airflow с Kubernetes сегодня стал стандартом де-факто. Однако, при практическом развертывании Airflow с помощью исполнителя Kubernetes и оператора пода в кластере этой платформы оркестрации контейнерных приложений возникает множество препятствий и трудностей. Сегодня рассмотрим, как обойти их с помощью service-mesh проекта с открытым исходным кодом Istio, какие проблемы могут при...

Краткий обзор Apache Airflow Helm chart 1.5.0

11 марта 2022 года вышла новая версия Apache Airflow Helm Сhart. Рассмотрим главные новинки релиза 1.5.0 и их практическую ценность с точки зрения прикладной дата-инженерии. А также разберем ключевые понятия этого менеджера пакетов Kubernetes. Что такое Helm chart в Kubernetes и причем здесь Apache AirFlow Напомним, Helm – это менеджер пакетов...

Я за тобой слежу: настраиваем мониторинг Spark-приложений в кластере Kubernetes

Как организовать удобный мониторинг за приложениями Apache Spark в кластере Kubernetes с помощью Prometheus и Grafana: пошаговый guide для администраторов и дата-инженеров с примерами. Создаем свою альтернативу наглядным дэшбордам AWS EMR с Java-библиотекой Dropwizard Metrics и средством настройки оповещений Alertmanager. Не только AWS EMR или как следить за Spark-приложениями в...

MLOps на AirFlow, MLFlow и сервисах AWS с экономией на облачном кластере за счет Spark 3

В рамках обучения дата-инженеров и ML-специалистов лучшим практикам MLOps, сегодня рассмотрим практический пример построения конвейера машинного обучения на Airflow, MLFlow, SageMaker и других сервисах Amazon. А также как Apache Spark версии 3 сократил расходы на облачный EMR-кластер почти в 2 раза. MLOps с AirFlow и MLFlow в облаке AWS Ранее...

Поиск по сайту