Kafka Streams vs Consumer API: 4 сходства и 5 отличий

Что общего у Kafka Streams и Consumer API, чем они отличаются и что выбирать для практического использования: краткое руководство для разработчика приложений потоковой обработки событий. Возможности и ограничения Kafka Streams и Consumer API Поскольку Apache Kafka как огромная экосистема со множеством компонентов для потоковой передачи событий, обилие и разнообразие этих...

Потоковые режимы коннектора Flink SQL к Kafka

Как не запутаться в многообразии коннекторов к Kafka, доступных во Flink Table API, и выбрать наиболее подходящий для своего сценария применения. Разница между Append Mode и Upsert-режимом коннектора Flink SQL к Kafka. 2 режима работы коннектора Kafka в Apache Flink Apache Flink поставляется с универсальным соединителем Kafka, который поддерживает последнюю...

5 проблем с распределенными очередями сообщений и их решения в Apache Kafka с RabbitMQ

Какие проблемы характерны для распределенных очередей сообщений, почему они случаются и как с ними справиться. Разбираемся со сбоями, ошибками и перегрузками на примере Apache Kafka и RabbitMQ. Проблемы с распределенными очередями и главные причины их появления Хотя Apache Kafka — это целая экосистема со множеством компонентов для потоковой передачи событий,...

Лучшие практики работы с DLQ-очередями в Apache Kafka

Недавно мы писали про очереди недоставленных сообщений в Apache Kafka и RabbitMQ. Сегодня поговорим про стратегии обработки ошибок, связанные с DLQ-очередями в Kafka, а также рассмотрим, какие сообщения НЕ надо помещать в Dead Letter Queue. 4 стратегии работы с DLQ-топиками в Apache Kafka Напомним, в Apache Kafka в очереди недоставленных...

4 главных настройки процессора Apache NiFi в GUI: параметры конфигурации

Чтобы сделать наши курсы по Apache NiFi Для дата-инженеров еще более полезными, сегодня поговорим про настройку процессоров. Читайте далее, как распараллелить задачи и потоки, задержать FlowFile, задать обратное давление и настроить другие полезные конфигурации. Как настроить конфигурации процессора Apache NiFi Будучи мощным инструментом дата-инженерии, Apache NiFi содержит множество обработчиков –...

Очереди недоставленных сообщений в Apache Kafka и RabbitMQ

Сегодня рассмотрим, зачем в системах асинхронного обмена данными нужны очереди недоставленных сообщений, как их организовать и обработать. Разбираемся с Dead Letter Queue на примере Apache Kafka и RabbitMQ. Обработка недоставленных сообщений в Apache Kafka Хотя Apache Kafka и RabbitMQ не являются взаимозаменяемыми альтернативами, именно эти системы чаще всего используются для...

MLOps c Kafka Streams и gRPC: 3 способа развернуть ML-модель в production

Сегодня рассмотрим, как развернуть модель машинного обучения в конвейере Apache Kafka, используя потоковый API технологии удаленного вызова процедур от Google под названием gRPC и сервер ML-моделей TensorFlow Serving. Краткий ликбез по gRPC Напомним, gRPC – это технология интеграции систем, включая клиентский и серверный компоненты, основанная на удаленном вызове процедур в...

Планирование заданий Spark в EDA-архитектуре

Как организовать эффективное планирование заданий Apache Spark в микросервисной архитектуре, управляемой событиями, с помощью паттернов Idempotent Consumer и Transactional Outbox. Проблемы оркестрации Spark-заданий shell-скриптами и переход к EDA-архитектуре При большом количестве приложений Apache Spark, которые взаимодействуют друг с другом как самостоятельные микросервисы, растет сложность управления ими. В частности, shell-скрипты позволяют...

Метрики приложений Kafka Streams и средства их мониторинга

Как использовать один и тот же топик Kafka для источника и назначения данных, обеспечивая высокую пропускную способность и низкую задержку приложений Kafka Streams. А также рассмотрим, какие встроенные метрики приложений есть у Kafka Streams, как добавить свои собственные и с помощью каких инструментов их отслеживать в реальном времени. Топики и...

Перебалансировка потребителей в Apache Kafka: чем она чревата и как с этим быть

Для параллельной обработки сообщений из своих топиков Kafka использует механизм группы приложений-потребителей, о чем мы писали здесь. Читайте далее, что происходит при изменении состава группы потребителей, чем опасна частая перебалансировка и как ее избежать. Что такое перебалансировка потребителей и почему она случается? Выполняя роль интеграционного звена между приложениями-продюсерами и приложениями-потребителями...

Поиск по сайту