Графовые алгоритмы без графовых баз данных: поиск сообществ с Networkx

Недавно мы разбирали, чем внутренне устройство графовых баз данных отличается от реляционных. Поэтому именно графовые базы целесообразно использовать для анализа больших графовов. Однако, на малых датасетах вполне можно обойтись и Python-библиотекой Networkx, что мы и рассмотрим далее на примере анализа банковских транзакций.   Python-скрипт поиска сообществ в графе с библиотекой...

Как на самом деле устроены графовые базы данных?

Что такое безиндексная смежность и как она снижает сложность алгоритмов обхода графа, позволяя быстро и эффективно запрашивать множество узлов и отношений. Разбираемся с уникальными принципами работы графовых баз данных на примере Neo4j. Архитектура и принципы работы графовых баз данных Несмотря на стремление разработчиков современных СУБД к унификации их решений, первичная...

Кто кому заплатил: пример поиска банковских транзакций в Neo4j

Чтобы показать еще один вариант использования графовой базы данных Neo4j, сегодня реализуем небольшое Python-приложение, которое генерирует граф знаний в облачной платформе Aura DB. Ищем финансовые переводы между компаниями и физическими лицами, считаем общую сумму и визуализируем найденные транзакции с помощью библиотеки Networkx. Python-приложение для работы с Neo4j в AuraDB Как...

ClearML для полного MLOps: примеры и возможности

Чтобы сделать наши курсы для специалистов по Data Science и ML-инженеров еще более полезными, сегодня познакомимся с очень мощным инструментом MLOps – open-source платформой ClearML. Что это такое, как работает, насколько упрощает разработку продуктов Machine Learning, а также зачем бизнесу ClearGPT. Что такое ClearML и как это поможет MLOps-инженеру Концепция...

Пишем Python-скрипт для работы с графом в Neo4j

Сегодня решим логистическую задачу поиска кратчайшего пути, создав граф знаний в Neo4j, развернутой в облачной платформе Aura DB и визуализируем найденный путь с помощью Python-библиотеки Networkx. Работа с Neo4j в AuraDB В прошлой статье мы упоминали, что для работы с популярной графовой СУБД Neo4j совсем необязательно устанавливать ее локально. Можно...

Архитектура MLOps и управление инфраструктурой как кодом

Из каких компонентов состоит архитектура MLOps, что такое инфраструктура как код, как управлять ею с помощью скриптов и почему это нужно на каждом этапе жизненного цикла моделей Machine Learning. Жизненный цикл ML-модели и MLOps MLOps – это набор методов и техник машинного обучения вместе с лучшими практиками разработки, развертывания и...

Статистика vs глубокое обучение для анализа данных временных рядов: что выбрать?

Проблемы анализа данных временных рядов и способы их решения: какие статистические методы и алгоритмы глубокого обучения лучше подходят для прогнозирования. Особенности прогнозирования временных рядов Напомним, временным рядом считается набор данных, каждая точка которого привязана ко времени (час, минуты, дни, месяцы, годы и прочие периоды). Эти данные имеют динамический характер и...

4 способа попробовать Neo4j: сравнение альтернатив

Где создать граф знаний и попробовать графовые алгоритмы для решения бизнес-задач: смотрим варианты запуска графовой СУБД на примере Neo4j. 4 варианта запуска Neo4j Neo4j является ярким представителем нереляционных СУБД и относится к категории графовых баз. Она поддерживает специализированные алгоритмы работы с графами, включая поиск путей, выявление сообществ, анализ связей и...

Продуктовое мышление в MLOps и метрики оценки ML-модели

Сегодня посмотрим на MLOps с точки зрения организационного и технического управления, решив вопрос о подходе к разработке ML-системы, а также рассмотрим метрики ее оценки перед развертыванием в production. Управленческий MLOps: 2 подхода к разработке системы Machine Learning Модели машинного обучения могут показывать высокую точность работы своих алгоритмов даже на производственных...

Работа с диском в резидентных СУБД на примере Memgraph и Redis

Недавно мы писали про резидентную графовую СУБД Memgraph, которая хранит данные в оперативной памяти. Сегодня рассмотрим, как выгрузить граф знаний из Memgraph на диск с помощью библиотеки GQLAlchemy, а также поговорим про персистентность другого популярного NoSQL-хранилища Redis, которое также является резидентным, но относится к семейству key-value.  Как сохранить данные из...

MLOps c Kafka Streams и gRPC: 3 способа развернуть ML-модель в production

Сегодня рассмотрим, как развернуть модель машинного обучения в конвейере Apache Kafka, используя потоковый API технологии удаленного вызова процедур от Google под названием gRPC и сервер ML-моделей TensorFlow Serving. Краткий ликбез по gRPC Напомним, gRPC – это технология интеграции систем, включая клиентский и серверный компоненты, основанная на удаленном вызове процедур в...

Что такое Memgraph и чем она отличается от Neo4j: сравнение графовых СУБД

В рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях сегодня познакомимся с графовой резидентной СУБД Memgraph и сравним ее с Neo4j, определив достоинства, недостатки и варианты использования в задачах аналитики больших данных. Memgraph vs Neo4j Memgraph — это высокопроизводительная графовая СУБД с открытым исходным кодом, которая хранит и...

Графовая аналитика в Greenplum и PostgreSQL: обзор расширений и возможностей

Инструменты графовых алгоритмов для аналитики больших данных в PostgreSQL и Greenplum: обзор расширений и возможностей. Знакомимся с Apache AGE и MADlib. Графовая аналитика в PostgreSQL Реляционные СУБД отлично подходят для хранения данных с четкой структурой практически в любой предметной области и предлагают широкие возможности аналитической обработки таких данных. Но иногда реляционная...

MLOps c Python-библиотекой Evidently: обнаружение дрейфа данных в ML-моделях

Зачем нужна Python-библиотека Evidently, и как она помогает специалистам по Data Science выявлять дрейф данных моделей Machine Learning в производственной среде. Знакомимся с еще одним MLOps-инструментом. Что такое дрейф данных, чем это опасно и как его обнаружить В отличие от многих других информационных систем, проекты машинного обучения очень сильно зависят...

Neo4j vs TigerGraph: сравнение графовых СУБД

Что общего у Neo4j с TigerGraph и чем они отличаются: разбираемся с популярными графовыми СУБД и их возможностями для аналитики больших данных в рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях. Сравнение Neo4j с TigerGraph Подробно об архитектуре, принципах работы, функциональных возможностях и вариантах использования TigerGraph мы писали...

MLOps для Spark-приложений в AWS с Amazon SageMaker: кейс Udemy

Как MLOps-инженеры платформы онлайн-курсов Udemy ускорили цикл разработки и внедрения проектов машинного обучения, используя возможности Amazon SageMaker для создания и отладки Spark-приложений в удаленном облачном кластере. MLOps на AWS Чтобы воспользоваться преимуществами бесшовной интеграции процессов разработки и развертывания машинного обучения согласно концепции MLOps, совсем не обязательно выстраивать собственную платформу из...

Ищем кратчайший путь с Cypher-запросами в Neo4j

Сегодня в рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях, решим классическую задачу логистики в графовой базе данных Neo4j без использования методов ее специальной библиотеки Graph Data Science, а средствами Cypher-запросов. Постановка задачи: критерии оценки для поиска кратчайшего пути Поиск кратчайшего пути – это классическая задача на графах,...

FastAPI versus BentoML: что лучше для MLOps и почему

Что общего у FastAPI с BentoML, чем они отличаются и почему только один из них является полноценным MLOps-инструментом. Смотрим на примере операций разработки и развертывания API сервисов машинного обучения. Что общего у FastAPI с BentoML и при чем здесь MLOps С точки зрения промышленной эксплуатации, в проектах машинного обучения следует...

MLOps с Graphene: зачем и как использовать GraphQL для проектов Machine Learning

Недавно мы упоминали GraphQL как мощный и гибкий язык запросов к данным, хранящимся в графовых СУБД. Сегодня рассмотрим, чем эта технология может быть полезна в проектах Machine Learning, какие сложности с ней связаны и как их решить с помощью MLOps. GraphQL для ML: возможности и примеры Не будучи в чистом...

Зачем вам TigerGraph: обзор графовой MPP-СУБД

Продолжая разговор про языки запросов к графовым базам данных, сегодня познакомимся с GSQL, который поддерживается в MPP-СУБД TigerGraph. Как работает эта распределенная NoSQL-база данных и каким образом реализует ACID-требования к транзакциям в операциях с графами. Архитектура и принципы работы графовой MPP-СУБД TigerGraph — это распределенное графоориентированное хранилище данных с массивно-параллельной...