Самообслуживаемый ETL-конвейер с Apache Airflow и Amazon Athena: кейс hipages

Сегодня разберем опыт австралийской ИТ-компании hipages по построению самообслуживаемого ETL-конвейера с Apache Airflow и Amazon Athena, призванного обеспечить высокое качество данных и облегчить дата-инженерам управление информационными активами. Изящное решение сложных проблем управления данными с примерами SQL-запросов к корпоративному Data Lake на AWS S3. Что не так с монолитной архитектурой платформы данных...

MLOps-конвейер с MLFlow: CI/CD для модели машинного обучения

Недавно мы писали про сложности разработки и развертывания ML-систем и способы их решения с помощью концепции MLOps. Продолжая эту тему, важную для обучения специалистов по Data Science, аналитиков и инженеров данных, сегодня рассмотрим основные некоторые преимущества фреймворка MLFlow для создания надежных конвейеров CI/CD в системах машинного обучения. CI/CD в MLOps...

Apache NiFi Flow Design System: назначение и возможности

Продвигая наши курсы для дата-инженеров и администраторов кластера Apache NiFi, сегодня рассмотрим, что такое Flow Design System, чем полезен этот подпроект фреймворка потокового сбора и маршрутизации больших данных и как его использовать на практике. Что такое NiFi Flow Design System NiFi Flow Design System (FDS) – это подпроект Apache NiFi,...

Apache Kafka в облаках: краткий обзор управляемых сервисов

В свете импортозамещения сегодня рассмотрим российские альтернативы облачных управляемых сервисов для развертывания Apache Kafka. Сравнение отечественных Yandex Managed Service for Apache Kafka и VK Cloud Solutions Big Data с зарубежным Confluent Cloud. Облачная Apache Kafka от Confluent и не только Пожалуй, самым популярным облачным сервисом Apache Kafka во всем мире...

Ускорение PySpark-приложений с PyArrow: лайфхаки Apache Spark для разработчиков

В рамках обучения разработчиков Spark-приложений и дата-инженеров, сегодня рассмотрим, как повысить эффективность выполнения Python-кода с помощью кросс-языковой платформы Apache Arrow. Что такое PyArrow и как это улучшает производительность PySpark-программ. Почему Spark Java быстрее PySpark и как это исправить с Apache Arrow Будучи популярным вычислительным движком в области Big Data, Apache...

Всему свое время: запуск DAG Apache Airflow по расписанию

Apache Airflow – мощный инструмент современной дата-инженерии. Этот оркестровщик batch-процессов позволяет запускать цепочки задач в виде направленного ациклического графа (DAG) по расписанию. Однако, планировщик Airflow имеет некоторые специфические особенности, которые необходимо знать каждому разработчику Data Flow. Об этом мы сегодня поговорим. Планирование запуска DAG в Apache AirFlow: краткий ликбез Запуски DAG...

Greenplum 6.20: что нового?

15 марта 2022 года вышло очередное обновление MPP-СУБД VMware Tanzu Greenplum, в основе которой лежит одноименный open-source проект. Читайте далее, какие новые фичи добавлены в выпуск 6.20 и что за проблемы устранены в этом минорном релизе. Самое главное: краткий обзор новых фич Greenplum 6.20 Greenplum 6.20.0 включает следующие новые и...

Инженерия Data Science: 3 лучшие практики по драйверам Neo4j

Зачем проверять подключение к Neo4j, какую URI-схему выбрать, чем плохи транзакции с автофиксацией и как передавать переменные в Cypher-запросы: рекомендации по использованию драйверов графовой СУБД в реальных приложениях аналитики больших данных. Драйверы и особенности подключения к базе данных Напомним, драйвер – это сущность, которая реализует определённые API-интерфейсы для взаимодействия с...

Проект года-2021: фабрика данных на Arenadata Hadoop в АО «Народный банк Казахстана»

Мы уже рассказывали о победителях российского ИТ-конкурса «Проект Года 2020» от профессионального сообщества GlobalCIO в номинации «Аналитика и Big Data», где «Газпром нефть» и банк ВТБ делятся опытом применения российских продуктов Arenadata. Сегодня рассмотрим кейс призера 2021 года - проект «Фабрика данных» в АО «Народный банк Казахстана», в результате которого...

Потоковая аналитика пользовательских сеансов с Apache Flink на примере Wynk

В этой статье для инженеров данных и разработчиков Hadoop-приложений рассмотрим опыт индийской компании Wynk по применению Apache Flink в качестве средства потоковой аналитики больших данных пользовательского поведения в мобильных приложениях прослушивания музыки. Особое внимание уделим вопросу формирования и обработки пользовательских сессий. Постановка задачи и выбор решения Wynk Music является одним...

Поиск по сайту