Big Data, Machine Learning и Internet of Things в складской логистике: 7 FMCG-кейсов

Вчера мы затрагивали тему управления поставками в ритейле с помощью технологий Big Data и Machine Learning. Теперь разберем подробнее, как большие данные, машинное обучение и интернет вещей меняют складскую логистику и насколько это выгодно бизнесу. Сегодня мы собрали для вас 7 практических примеров: кейсы от отечественных и зарубежных транспортных компаний,...

Завод, телеком и госсектор: 3 примера внедрения Arenadata

В этой статье мы продолжим рассказывать про практическое использование отечественных Big Data решений на примере российского дистрибутива Arenadata Hadoop (ADH) и массивно-параллельной СУБД для хранения и анализа больших данных Arenadata DB (ADB). Сегодня мы приготовили для вас еще 3 интересных кейса применения этих решений в проектах цифровизации бизнеса и государственном...

Современное КХД в облаках: гибриды, лямбда, MPP и прочая Big Data

В продолжение темы про корпоративные хранилища данных, сегодня мы рассмотрим облачные варианты Data Warehouse с учетом тренда на расширенную аналитику Big Data на базе машинного обучения. Читайте в нашей статье про синергию классической LSA-архитектуры локального КХД с Лямбда-подходом, MPP-СУБД, а также Apache Hadoop, Spark, Hive и другими технологиями больших данных....

Data lineage и provenance: близнецы или двойняшки – Big Data Management для начинающих

В этой статье мы продолжим разговор про основы управления данными и рассмотрим, что такое data provenance и data lineage, чем похожи и чем отличаются эти понятия. Также разберем, почему эти термины особенно важны для Big Data, какие инструменты помогают работать с ними, а также при чем здесь GDPR. Что такое...

Что такое Каппа-архитектура: альтернатива Лямбда для потоков Big Data

Вчера мы рассказали, что такое лямбда-архитектура. Сегодня рассмотрим Каппа - альтернативный подход к проектированию Big Data систем. Читайте в нашей статье, зачем нужна эта концепция, каковы ее достоинства и недостатки, чем Каппа отличается от Лямбда, где это используется на практике и при чем тут Apache Kafka с Machine Learning. Зачем...

Что такое лямбда-архитектура: основы Big Data для начинающих

Рассматривая основы больших данных, сегодня мы расскажем лямбда-архитектуру, одну из двух главных подходов к построению Big Data систем. Читайте в нашей статье, зачем нужна эта концепция и как она работает, а также при чем тут машинное обучение, интернет вещей, Apache Spark и Hadoop. Что такое Лямбда-архитектура и зачем она нужна...

7 принципов Lean в Big Data: бережливое производство больших данных

Не претендуя на лавры Мэри и Тома Поппендиков, которые впервые освятили применение Lean в разработке ПО, сегодня мы расскажем, как идеи бережливого производства реализуются в области Big Data. Читайте в нашей статье про принцип вытягивания в Apache Kafka, концепцию «точно вовремя» в Apache Spark, SMED в Kubernetes и облачных кластерах...

AirFlow KubernetesExecutor: 3 способа запуска и 4 главных плюса для DevOps-инженера

Эффективное обучение AirFlow, также как курсы по Spark, Hadoop, Kafka и другим технологиям больших данных (Big Data) также включают нюансы интеграции этого фреймворка с другими средами. Например, вчера мы рассматривали преимущества DevOps-подхода к разработке Data Flow на примере взаимосвязи Apache Airflow с Kubernetes посредством специальных операторов. Продолжая эту тему, сегодня...

7 достоинств и 5 недостатков Apache AirFlow

Продолжая говорить про обучение Airflow, сегодня мы рассмотрим ключевые преимущества и основные проблемы этой библиотеки для автоматизации часто повторяющихся batch-задач обработки больших данных (Big Data). Также мы собрали для вас пару полезных советов, как обойти некоторые ограничения Airflow на примере кейсов из Mail.ru, IVI и АльфаСтрахования. Чем хорош Apache AirFlow:...

ETL для пакетов Big Data: 3 примера использования Apache AirFlow

В этой статье мы поговорим про Apache AirFlow - эффективный инструмент для пакетных ETL-задач при работе с большими данными (Big Data): что это такое, как работает и чем полезен для инженера данных (Data Engineer). Также рассмотрим несколько практических примеров реального использования этой библиотеки для разработки, планирования и мониторинга batch-процессов. Что...

Поиск по сайту