Как Apache AirFlow отслеживает происхождение данных, какова структура спецификации OpenLineage, чем она схожа с OpenAPI, какие инструменты позволяют сформировать эту документацию и чем она полезна. Что такое OpenLineage В области инженерии данных и управления конвейерами их обработки очень важно понятие происхождения данных (Data Lineage). Это концепция отслеживания и визуализации данных...
Сегодня рассмотрим, какие улучшения Apache Spark опубликованы в 2023 году и как подать свое предложение по улучшению самого популярного вычислительного движка в стеке Big Data. Что такое SPIP и как подать свое предложение по улучшению фреймворка В любом продукте помимо ошибок есть также предложения по улучшению. В Apache Spark они...
Чем отличается оркестрация ETL-процессов в Databricks и Apache AirFlow: принципы работы, достоинства и недостатки, а также что выбирать дата-инженеру для решения практических задач. Apache AirFlow vs Spark в Databricks: сходства и отличия Облачная платформа Databricks, основанная на Apache Spark, предлагает пользователям единую среду для создания, запуска и управления различными рабочими...
Как получать результаты обработки данных с помощью Apache Spark, адресуя ИИ бизнес-запросы на английском языке: знакомимся с English SDK от Databricks. Настоящий Low Code с PySpark-AI. English SDK for Apache Spark и PySpark-AI: как это работает Большие языковые модели (LLM, Large Language Model), основанные на генеративных нейросетях, применимы не только...
Сегодня рассмотрим особенности отладки PySpark-приложений: как Python-код исполняется в JVM, какие сложности возникают у разработчика при тестировании и исправлении ошибок в программе, написанной локально и запускаемой в кластере, а также как настроить вывод событий в лог-файл. Запуск и выполнение PySpark-кода Хотя Apache Spark и имеет Python API, позволяя писать код...
14 августа 2023 года вышел очередной релиз Apache AirFlow . Разбираем его самые главные новые возможности, улучшения и исправления ошибок: отказ от Python 3.7, задачи установки/демонтажа, встроенная поддержка спецификации OpenLineage, обновления интерфейса, упрощение управления сложными зависимостями и другие фичи Apache AirFlow 2.7. Задачи установки/демонтажа Apache AirFlow 2.7 содержит более 35...
Каждый дата-инженер и аналитик данных активно использует регулярные выражения для поиска значений в тексте по заданному шаблону. Сегодня рассмотрим, как это сделать с функциями regexp_replace(), rlike() и regexp_extract в Apache Spark на примере небольшого PySpark-приложения. Как работает функция regexp_replace() Регулярным выражением называется последовательность символов, задающая шаблон соответствия в тексте. Например,...
Сегодня усложним пример из прошлой статьи с простым ETL-конвейером, который добавлял в базу данных интернет-магазина новые записи о клиентах, сгенерированные с помощью библиотеки Faker. Разбираем, как удалить из PostgreSQL данные об успешно доставленных заказах за прошлый месяц, предварительно сохранив их в JSON-файл с многоуровневой структурой. Пишем и запускаем DAG Apache...
Как и большинство Big Data фреймворков, Apache Flink имеет Python API, позволяя разработчикам высоконагруженных потоковых приложений писать код на этом популярном языке программирования. Однако, Flink-задание выполняется в JVM, поэтому сам фреймворк транслирует Python-код в Java. Разбираемся, в чем особенности этого многоступенчатого процесса. Из Python в Java: как устроен API PyFlink...
Сегодня реализуем простой ETL-конвейер для реляционной СУБД PostgreSQL, запустив Apache AirFlow в интерактивной среде Google Colab. Пример DAG из 3-х задач: получить количество строк в одной из таблиц БД, сгенерировать новые строки и записать их, не нарушив ограничений уникальности первичного ключа. Постановка задачи Возьмем в качестве примера базу данных для...
Медленно, муторно, небезопасно: что не так с запуском Apache AirFlow в интерактивной среде Google Colab и можно ли с этим смириться. Разбираем на личном опыте. Трудности работы с Apache AirFlow в среде Google Colab О том, что можно настроить AirFlow в Google Cloud Platform, и запускать DAG-файлы из Colab, используя...
В этой статье рассмотрим, как добавить собственное соединение в Apache AirFlow, запустив его в интерактивной среде Colab с помощью Python-кода, и использовать его при отправке результатов выполнения задач DAG в свой чат-бот Телеграм. Постановка задачи: DAG с отправкой данных в Телеграм Недавно я подробно рассказывала, как настроить AirFlow в Google...
Сегодня рассмотрим, как выполнить DAG Apache AirFlow, запустив его в интерактивной среде Colab и получив доступ в веб-GUI этого фреймворка, создав туннель локального хоста на публичный URL с помощью утилиты ngrok. В качестве примера построим простой конвейер из 5 задач. Запуск Apache AirFlow в Google Colab Чтобы не повторять содержимое...
Сегодня рассмотрим, как запустить Apache AirFlow на мощностях Google в интерактивной среде Colab и войти в веб-GUI этого фреймворка, создав туннель локального хоста на публичный URL с помощью утилиты ngrok. Запуск Apache AirFlow в Google Colab Хотя Google Colab является мощным облачным окружением для запуска и написания Python-кода, выполнение написанных...
Самый простой способ организовать обработку и логирование ошибок в приложении-потребителе, чтобы продолжать считывание из Apache Kafka, даже если продюсер изменил структуру полезной нагрузки сообщения. Публикация данных в Kafka Напомним, Apache Kafka, в отличие от RabbitMQ, не позволяет организовать очередь недоставленных сообщений (DLQ, Dead Letter Queue) средствами самой платформы, о чем мы...
Будучи популярным фреймворком для оркестрации пакетных процессов обработки Apache AirFlow образует вокруг себя целую экосистему. Сегодня познакомимся с некоторыми инструментами, которые пригодятся дата-инженеру для проектирования и отладки конвейеров данных: ADA, Ditto, Amundsen, gusty и Viewflow. Аналитика системных метрик Apache AirFlow с ADA и Amundsen ADA — это микросервис, созданный для...
Как использовать функции обратного вызова для отладки конвейера обработки данных в Apache AirFlow, а также отправки оповещений об ошибках. Полезные примеры регистрации и мониторинга сбоев на уровне задачи и всего DAG с on_failure_callback(). Польза обратных вызовов Apache AirFlow на примере on_failure_callback По мере роста и усложнения конвейеров данных, построенных с...
Недавно мы разбирали, чем внутренне устройство графовых баз данных отличается от реляционных. Поэтому именно графовые базы целесообразно использовать для анализа больших графовов. Однако, на малых датасетах вполне можно обойтись и Python-библиотекой Networkx, что мы и рассмотрим далее на примере анализа банковских транзакций. Python-скрипт поиска сообществ в графе с библиотекой...
Иногда возникает потребность в повторном чтении данных из Apache Kafka с определенного момента времени. Сегодня рассмотрим, как это сделать, написав простенький Python-скрипт потребления из раздела топика. Публикация данных в Kafka В качестве примера возьмем ранее рассмотренный в этой статье кейс приема потока обращений в интернет-магазин. Обращения могут представлять собой заявки...
Недавно мы писали про устранение зависших в очереди задач в Apache AirFlow 2.6. Сегодня разберемся с другими новинками этого релиза, которые особенно важны для дата-инженера: настраиваемые поля DAG, добавление собственных уведомлений, управление ресурсами, кластеризация исполнителей Kubernetes и еще множество полезных возможностей. Главные новинки и исправления весенних выпусков Apache AirFlow в...