Что не так с ClickHouse: 10 главных недостатков

Вчера мы разобрали, чем хорош ClickHouse и почему. Сегодня рассмотрим обратную сторону скорости, расширяемости и других преимуществ этой аналитической СУБД от Яндекса для обработки запросов по структурированным большим данным в реальном времени. Также читайте в нашей статье, как обойти недостатки и ограничения этой системы или понизить степень их влияния на...

За что все его так любят: ТОП-5 достоинств ClickHouse для Big Data

Сегодня рассмотрим основные преимущества ClickHouse – аналитической СУБД от Яндекса для обработки запросов по структурированным большим данным в реальном времени. Читайте в нашей статье, чем еще хорош Кликхаус, кроме высокой скорости, и почему эту систему так любят аналитики, разработчики и администраторы Big Data. Чем хорош ClickHouse: главные преимущества Напомним, основным...

Не только Kafka Engine: 4 альтернативы для интеграции ClickHouse и кейс Ситимобил

Интеграционный движок Kafka Engine для потоковой загрузки данных в ClickHouse из топиков Кафка – наиболее популярный инструмент для связи этих Big Data систем. Однако, он не единственное средство интеграции Кликхаус с Apache Kafka. Сегодня рассмотрим, как еще можно организовать потоковую передачу больших данных от самого популярного брокера сообщений в колоночную...

3 проблемы движка интеграции ClickHouse с Kafka и способы их решения

Вчера мы рассматривали интеграцию ClickHouse с Apache Kafka с помощью встроенного движка. Сегодня поговорим про проблемы, которые могут возникнуть при его практическом использовании и разберем способы их решения для корректной связи этих Big Data систем. Почему случаются тайм-ауты: многопоточность и безопасность Напомним, интеграцию ClickHouse и Kafka обеспечивает встроенный движок (engine),...

ClickHouse + Kafka: 5 примеров совместного использования и особенности интеграционного движка

В этой статье рассмотрим интеграцию ClickHouse с Apache Kafka: когда и зачем она нужна, как связать эти две Big Data системы, каковы ограничения и недостатки существующих способов и каким образом их можно обойти. Также разберем, почему кластер Кликхаус использует Zookeeper и что такое материализованное представление таблицы Кафка. Big Data маркетинг,...

Как связать Greenplum и Kafka: 2 способа интеграции и коннектор Arenadata DB

Мы уже рассказывали про интеграцию Tarantool с Apache Kafka на примере Arenadata Grid. Сегодня рассмотрим, как интегрировать Кафка с MPP-СУБД Greenplum и каковы ограничения каждого из существующих способов. Читайте в сегодняшнем материале, что такое GPSS, PXF и при чем тут Docker-контейнер с коннектором Кафка для Arenadata DB. IoT и не...

4 крупных примера внедрения Tarantool, 3 достоинства и 2 главных недостатка IMDB

Сегодня рассмотрим ключевые достоинства и недостатки резидентных СУБД для больших данных на примере Tarantool. Читайте в нашей статье про основные сценарии использования In-Memory Database (IMDB) в области Big Data с конкретными кейсами из реального бизнеса от Альфа-Банка, Аэрофлота, Тинькофф-Банка и Мегафона. Где и как используются In-Memory в Big Data: 4...

Интеграция Big Data или как связать Tarantool c Apache Kafka на примере Arenadata Grid

Продолжая разбираться с In-Memory СУБД Tarantool и Arenadata Grid, сегодня рассмотрим, как эти резидентные базы данных интегрируются с Apache Kafka. Читайте в нашей статье, что такое коннекторы и процессоры, а также как записать в топик Кафка сообщение, SQL-запрос или часть таблицы. Arenadata Grid и Apache Kafka: коннектор + процессоры Напомним,...

Зачем вам Tarantool: разгоняем большие данные с помощью In-Memory database

В этой статье мы рассмотрим резидентные (In-Memory) базы данных на примере Tarantool и Arenadata Grid: что это, как они работают и где используются. Еще поговорим, каким образом эти Big Data системы могут ускорить работу распределенных приложений без замены существующих СУБД, а также при чем здесь промышленный интернет вещей и экосистема...

Что такое programmatic print и при чем тут персональный маркетинг с Big Data: 4 кейса от FMCG-гигантов

Сегодня мы расскажем, что такое программная печать, зачем ритейлеры используют эту технологию и как programmatic print связана с Big Data. Читайте в нашей статье, как IKEA, «Рив Гош», «Ив Роше» и Bonprix используют Big Data для персонального маркетинга в своих рекламных кампаниях, а также повышают лояльность клиентов и стимулируют продажи...

Видеоаналитика с Machine Learning в ритейле: персональный маркетинг vs 152-ФЗ

В продолжение темы про использование технологий Big Data и Machine Learning в FMCG-бизнесе, сегодня мы поговорим, как распознавание лиц помогает сформировать персональные маркетинговые предложения и насколько это законно. Разбираемся с видеоаналитикой и 152-ФЗ «О персональных данных» на примерах отечественных и зарубежных ритейлеров. От воров до VIP-клиентов: 5 примеров распознавания лиц...

Как видеоаналитика Big Data с Machine Learning приносит деньги: 7 примеров FMCG

Современное видеонаблюдение в ритейле – это не только обнаружение магазинных воришек, а полноценная аналитика Big Data с мощными алгоритмами Machine Learning для оперативного и стратегического управления. В этой статье мы приготовили для вас 7 сценариев практического использования технологий видеоаналитики в FMCG-секторе с реальными кейсами их внедрения в России на примере...

Коботы в ритейле: 3 причины взглянуть на робототехнику по-новому

Цифровизация ритейла – это не только внедрение Apache Hadoop, Spark, Kafka и Machine Learning для аналитики больших данных, прогнозирования спроса и оптимизации складской логистики. Сегодня мы расскажем, что такое коботы и как эти технологии помогают бизнесу. В этой статье мы собрали для вас 7 примеров использования коллаборативных роботов в FMCG....

Big Data, Machine Learning и Internet of Things в складской логистике: 7 FMCG-кейсов

Вчера мы затрагивали тему управления поставками в ритейле с помощью технологий Big Data и Machine Learning. Теперь разберем подробнее, как большие данные, машинное обучение и интернет вещей меняют складскую логистику и насколько это выгодно бизнесу. Сегодня мы собрали для вас 7 практических примеров: кейсы от отечественных и зарубежных транспортных компаний,...

Нейросети для программ лояльности и оптимизации поставок: 3 Big Data кейса в FMCG

Продолжая рассказывать про применение технологий Big Data и Machine Learning в ритейле, сегодня мы собрали для вас еще 3 интересных примера от FMCG-гигантов. Читайте в нашей статье, как большие данные и машинное обучение помогли Coca-Cola, Starbucks, Neutrogena, Magnum, Procter&Gamble и Nestlé наладить геолокационный маркетинг, повысить узнаваемость своих брендов и улучшить...

Всегда Coca-Cola: 5 Big Data кейсов от FMCG-гиганта

По запросу одного из наших клиентов, этой статьей мы открываем серию публикаций про применение технологий Big Data и Machine Learning в торговле быстрооборачиваемых товаров повседневного спроса (FMCG, Fast moving consumer goods). Сегодня рассмотрим, как большие данные, машинное обучение и прочие методы искусственного интеллекта используются в производстве и продаже газированных напитков...

Зелено – не молодо: как устроена MPP-СУБД Greenplum

В этом материале рассмотрим реализацию массово-параллельной архитектуры для хранения и аналитической обработки больших данных на примере популярной Big Data СУБД Greenplum. Прочитав эту статью, вы поймете, почему MPP-базы потребляют много ресурсов и как связано число сегментов со скоростью работы кластера. MPP, Greenplum и PostgreSQL Напомним, СУБД Greenplum – это типичный представитель...

3 главных достоинства и недостатка MPP-СУБД для хранения и аналитики Big Data на примере Greenplum

Сегодня поговорим про достоинства и недостатки массово-параллельной архитектуры для хранения и аналитической обработки больших данных, рассмотрев Greenplum и Arenadata DB. Читайте в нашей статье, что такое MPP-СУБД, где и как это применяется, чем полезны эти Big Data решения и с какими проблемами можно столкнуться при их практическом использовании. Что MPP-СУБД...

Очень быстрая аналитика больших данных: Arenadata QuickMarts и яндексовский ClickHouse

Вчера мы рассказывали про применение Arenadata DB в крупной отечественной сети розничного ритейла. Сегодня рассмотрим еще один Big Data продукт от российской компании Аренадата, который Х5 Retail Group использует для быстрой аналитики больших данных. Читайте в нашей статье, что такое Arenadata QuickMarts и при чем здесь ClickHouse от Яндекса. Что...

Еще больше данных для торговой аналитики: Arenadata в Х5 Retail Group

Продолжая разговор про успехи применения отечественных Big Data продуктов, сегодня мы рассмотрим пример использования Arenadata DB в одной из ведущих отечественных компаний розничного ритейла. Читайте в нашей статье про особенности внедрения распределенной отказоустойчивой MPP-СУБД для аналитики больших данных в Х5 Retail Group. Зачем ритейлеру еще одно Big Data решение: специфика...