Как Apache Cassandra, Kafka, Storm и Hadoop формируют рекомендации пользователям Spotify

Продолжая разговор про примеры практического использования Apache Cassandra в реальных Big Data проектах, сегодня мы расскажем вам о рекомендательной системе стримингового сервиса Spotify на базе этой нереляционной СУБД в сочетании с другими технологиями больших данных: Kafka, Storm, Crunch и HDFS. Рекомендательная система Spotify: зачем она нужна и что должна делать...

Apache NiFi vs StreamSets Data Collector: выбираем ETL-средство для Big Data и IoT/IIoT

Завершая разговор про ETL-инструменты Big Data и цикл статей об Apache NiFi (ANF), сегодня мы сравним его со StreamSets Data Collector (SDC): чем похожи и чем отличаются эти системы маршрутизации данных. Также рассмотрим, в каких случаях следует выбирать ту или иную платформу и почему. Что общего между Apache NiFi и...

Apache Flume vs NiFi и еще 2 потоковые ETL-платформы Big Data и IoT/IIoT

Рассмотрев пакетные ETL-инструменты больших данных, сегодня мы поговорим про потоковые средства загрузки и маршрутизации информации из различных источников: Apache NiFi, Fluentd и StreamSets Data Collector. Читайте в нашей статье про их сходства, различия, достоинства и недостатки. Также мы собрали для вас реальные примеры их практического использования в Big Data системах...

Что не так с Apache NiFi: 5 главных недостатков, важных в Big Data и IoT-проектах

Популярность Apache NiFi в Big Data системах и интернете вещей (Internet of Things, IoT), в т.ч. индустриальном (Industrial Iot, IIoT), обусловлена широкими функциональными возможностями этой платформы по быстрой загрузке и маршрутизации данных любого формата между множеством источников и приемников информации. Также среди ключевых преимуществ NiFi отмечается распределенная архитектура, масштабируемость, наличие...

Чем хорош Apache NiFi: 10 главных достоинств для применения в Big Data и IoT-проектах

Продолжая разговор про практическое использование Apache NiFi в системах больших данных (Big Data) и интернета вещей (Internet of Things), сегодня мы рассмотрим, чем обусловлена популярность этой кластерной платформы маршрутизации, преобразования и доставки распределенной информации. Читайте в нашей статье про ключевые преимущества Apache NiFi в контексте прикладного использования этого инструмента. 10...

Блокчейн, озеро данных и еще 3 кейса Apache NiFi в комплексных Big Data системах

В прошлый раз мы рассмотрели пример прототипа IIoT-системы на основе одноплатного мини-компьютера Raspberry Pi, брокере обмена сообщениями Mosquitto и платформе маршрутизации данных Apache NiFi. Сегодня мы покажем, что этот инструмент преобразования и доставки данных из множества сторонних систем может применяться не только в IoT-решениях. Читайте в нашей статье про 5...

12 уровней IIoT-архитектуры: от периферийных датчиков до аналитики Big Data

Мы уже рассматривали типовую архитектуру систем Internet of Things (IoT). Сегодня поговорим подробнее про уровневую модель передачи и обработки данных от конечных устройств до облачных IoT-платформ, а также приведем примеры наиболее популярных средств обеспечения каждого из уровней этой сложной архитектуры Industrial Internet of Things, включая инструменты Big Data. Многоуровневый IIoT:...

Сходства и различия популярных Big Data фреймворков распределенной потоковой обработки: сравниваем Apache Kafka Streams, Spark Streaming, Flink, Storm и Samza

В этой статье мы рассмотрим, чем похожи и чем отличаются 5 самых популярных инструментов распределенной обработки потоков Big Data: Apache Kafka Streams, Spark Streaming, Flink, Storm и Samza, а также поговорим про наиболее значимые факторы выбора между этими программными средствами. 5 общих характеристик распределенных Big Data фреймворков потоковой обработки Прежде...

Где и как используется Apache Samza: реальные примеры Big Data проектов

Apache Samza часто сравнивают с другими Big Data фреймворками распределенных потоковых вычислений в реальном времени (Real Time, RT): Kafka Streams, Spark Streaming, Flink и Storm. Apache Spark и Flink обладают практически одинаковым набором функциональных возможностей и компонентов, поэтому их можно сравнивать между собой более-менее объективно. Apache Samza является более простой...

Где и как в Big Data используется Apache Storm: примеры применения

Apache Storm (Сторм, Шторм) часто употребляется в контексте других BigData инструментов для распределенных потоковых вычислений в реальном времени (Real Time, RT): Spark Streaming, Kafka Streams, Flink и Samza. Однако, если Apache Spark и Flink по функциональным возможностям и составу компонентов еще могут конкурировать между собой, то сравнивать с ними Шторм,...

Что выбрать для потоковой обработки Big Data: Apache Kafka Streams или Spark Streaming

Проанализировав сходства и различия Apache Kafka Streams и Spark Streaming, можно сделать некоторые выводы относительно выбора того или иного решения в качестве основного инструмента потоковой обработки Big Data. В этой статье мы собрали для вас аргументы в пользу Кафка Стримс и Спарк Стриминг в конкретных ситуациях, а также нашли некоторые...

ТОП-7 сходств и различий между Apache Kafka Streams и Spark Streaming

Сегодня мы рассмотрим популярные Big Data инструменты обработки потоковых данных: Apache Kafka Streams и Spark Streaming: чем они похожи и чем отличаются. Стоит сказать, что Спарк Стриминг и Кафка Стримс – возможно, наиболее популярные, но не единственные средства обработки информационных потоков Big Data. Для этой цели существует еще множество альтернатив,...

Путешествуем во времени и пользовательском пространстве с Apache Kafka Streams

В этой статье мы продолжим говорить про основы Apache Kafka Streams для начинающих и рассмотрим одно из самых важных свойств Кафка – возможность обработки любых данных, накопленных с начала работы Big Data системы. Что такое окна Apache Kafka Streams и зачем они нужны Кафка обеспечивает объективную достоверность накопленных исторических данных...

DSL и Processor API в Apache Kafka Streams для распределенной обработки потоковых данных

Как мы уже писали, в Apache Kafka Streams таблица и поток данных – это базовые и взаимозаменяемые понятия. Сегодня поговорим о том, как работать с этими объектами Big Data с помощью внутренних средств Кафка Стримс, используя готовые методы высокоуровневого языка DSL и низкоуровневый API-интерфейс для распределенной обработки потоковых данных в...

Как работает Apache Kafka Streams: архитектура и топология внутренних обработчиков потоков

В продолжение темы про основы Apache Kafka Streams для начинающих, сегодня мы поговорим про то, как абстрактные понятия топика (topic), таблицы (table) и потока (stream) позволяют распараллелить обработку информационных потоков. Читайте в нашем новом материале, что такое обработчики потоков Кафка Стримс, как они обрабатывают разделы топиков (topic partition) Kafka и...

Основы Apache Kafka Streams: чем отличаются потоки от таблиц и топиков

Сегодня мы поговорим про базовые понятия Apache Kafka Streams: потоки, таблицы и топики Кафка. Читайте в нашей статье, как Stream, Table и Topic связаны между собой, чем они похожи, когда таблица становится потоком и почему это обеспечивает эластичность и отказоустойчивость распределенных потоковых приложений Big Data. Что такое таблица, топик и...

5 достоинств и пара недостатков Apache Kafka Streams API для DevOps-инженера Big Data систем

Мы уже рассказывали про Apache Kafka Streams API. В продолжение этой темы, сегодня отметим ключевые преимущества этой технологии, особенно важные для DevOps-инженера и разработчика Big Data систем, а также поговорим про некоторые недостатки и возможные альтернативы Кафка Стримс API. 5 главных достоинств Apache Kafka Streams API Для DevOps-инженера Big Data...

Как Apache Kafka Streams API помогает DevOps-инженеру Big Data систем

Продолжая разговор про Apache Kafka Streams, сегодня мы расскажем, как API этой мощной библиотеки упрощает жизнь DevOps-инженеру и разработчику Big Data систем. Читайте в нашей статье, как Kafka Streams API эффективно обрабатывать большие данные из топиков Кафка на лету без использования Apache Spark, а также быстро создавать и развертывать распределенные...

Повышаем скорость обработки потоков Big Data с помощью Apache Kafka Streams

Читайте в нашей сегодняшней статье, как Apache Kafka Streams помогает быстро создавать приложения для обработки потоков Big Data без кластера Кафка, работать с состояниями распределенных программ без базы данных, эффективно тестировать и разворачивать потоковые микросервисы согласно DevOps-подходу, а также реальные кейсы практического применения этой технологии. Что такое Apache Kafka Streams...

Как Machine Learning помогает бизнесу зарабатывать на погоде: Big Data и метеомаркетинг

Мы уже рассказывали, как машинное обучение (Machine Learning) и большие данные (Big Data) помогают бизнесу сделать свои маркетинговые кампании персональными и оптимизировать рекламный бюджет. В этой статье рассмотрим, как метеоусловия влияют на маркетинг и каким образом бизнес может заработать на использовании данных об этих внешних условиях. Как погода влияет на...