Чтобы наглядно показать, как аналитика больших данных и машинное обучение помогают быстро решить актуальные бизнес-проблемы, сегодня мы рассмотрим кейс компании Леруа Мерлен. Читайте в нашей статье про нахождение аномалий в сведениях об остатках товара на складах и в магазинах с помощью моделей Machine Learning, а также про прикладное использование Apache...
Мы уже затрагивали тему корпоративных хранилищ данных (КХД), управления мастер-данными и нормативно-справочной информаций (НСИ) в контексте технологий Big Data. В продолжение этого, сегодня рассмотрим, что такое профилирование данных, зачем это нужно, при чем тут озера данных (Data Lake) и ETL-процессы, а также прочие аспекты инженерии и аналитики больших данных. Что...
В этой статье поговорим про интеграцию информационных систем: обсудим SOA и ESB-подходы, рассмотрим стриминговую архитектуру и возможности Apache Kafka для организации быстрого и эффективного обмена данными между различными бизнес-приложениями. Также обсудим, что влияет на архитектуру интеграции корпоративных систем и распределенных Big Data приложений, что такое спагетти-структура и почему много сервисов...
Интеграционный движок Kafka Engine для потоковой загрузки данных в ClickHouse из топиков Кафка – наиболее популярный инструмент для связи этих Big Data систем. Однако, он не единственное средство интеграции Кликхаус с Apache Kafka. Сегодня рассмотрим, как еще можно организовать потоковую передачу больших данных от самого популярного брокера сообщений в колоночную...
В этой статье мы продолжим рассказывать про практическое использование отечественных Big Data решений на примере российского дистрибутива Arenadata Hadoop (ADH) и массивно-параллельной СУБД для хранения и анализа больших данных Arenadata DB (ADB). Сегодня мы приготовили для вас еще 3 интересных кейса применения этих решений в проектах цифровизации бизнеса и государственном...
Сегодня мы поговорим про продукты компании Arenadata – отечественного разработчика дистрибутива Apache Hadoop (ADH), массивно-параллельной СУБД для хранения и анализа больших данных Arenadata DB (ADB) и других Big Data платформ. Читайте в нашей статье, где внедрены эти решения и какую пользу они уже успели принести бизнесу. Облака и банк: 3...
В этой статье мы рассмотрим основные плюсы и минусы Data Vault – популярного подхода к моделированию сущностей при проектировании корпоративных хранилищ данных (КХД). Читайте сегодня, почему промежуточные базы перед витринами данных упрощают ETL-процессы, за счет чего обеспечивается отсутствие избыточности и как много таблиц могут усложнить жизнь архитектора Big Data. Чем...
Продолжая разговор про проектирование корпоративных хранилищ данных с использованием подхода Data Vault, сегодня мы рассмотрим, как эта модель влияет на дизайн ETL-процессов и их реализацию. Читайте в нашей статье про загрузку данных в КХД по модели Data Vault и проблемы, которые могут при этом возникнуть, а также способы их решения...
Вчера мы рассмотрели, что такое Data Vault, почему возникла эта модель и чем она полезна при проектировании архитектуры корпоративных хранилищ данных (КХД) и озер данных (Data Lake). Сегодня разберем ключевые понятия Data Vault и поговорим про возможности Data Vault 2.0 для области больших данных (Big Data). Ключевые понятия Data Vault...
Сегодня мы поговорим о проектировании архитектуры корпоративных хранилищ данных (КХД) и рассмотрим, какие методы и инструменты используются для моделирования структуры DWH и динамики ETL-процессов. В этой статье про основы Data Modelling разберем, что такое OLAP и OLTP, почему 3-я нормальная форма стала стандартом в SQL-СУБД, чем схемы звезды отличается от...
В продолжение темы про корпоративные хранилища данных, сегодня мы рассмотрим облачные варианты Data Warehouse с учетом тренда на расширенную аналитику Big Data на базе машинного обучения. Читайте в нашей статье про синергию классической LSA-архитектуры локального КХД с Лямбда-подходом, MPP-СУБД, а также Apache Hadoop, Spark, Hive и другими технологиями больших данных....
В этой статье мы расскажем, что такое корпоративное хранилище данных, зачем оно нужно и как устроено. Еще рассмотрим основные достоинства и недостатки Data Warehouse, а также чем оно отличается от озера данных (Data Lake) и как традиционная архитектура КХД может использоваться при работе с большими данными (Big Data). Где хранить...
В этой статье мы продолжим разговор про основы управления данными и рассмотрим, что такое data provenance и data lineage, чем похожи и чем отличаются эти понятия. Также разберем, почему эти термины особенно важны для Big Data, какие инструменты помогают работать с ними, а также при чем здесь GDPR. Что такое...
Управление данными не сводится к выделению роли дата стюарда и обеспечению Data Quality. Сегодня мы расскажем, что такое мастер-данные, как искусственный интеллект помогает решать проблемы управления НСИ и почему эффективный Master Data Management (MDM) особенно важен в мире Big Data. Что такое мастер-данные или зачем управлять НСИ Начнем с определения:...
Продолжая разговор про качество данных, сегодня мы рассмотрим организационную сторону этого аспекта и расскажем, что такое ответственность за большие данные и чем занимается дата стюард. Читайте в нашей статье про процессы Data Governance и особенности тактического управления данными: зачем нужен Data Steward, какую пользу он приносит бизнесу и сколько ему...
Сегодня мы поговорим про качество данных – что это за показатель, в чем он измеряется и почему так важен для машинного обучения и других приложений Big Data. Читайте в нашей статье про процессы и инструменты управления качеством данных, а также профессию Data Quality инженера. Почему большие данные должны быть качественными...
Чтобы обучение Airflow было максимально приближенным к практике, сегодня мы поговорим про особенности реального внедрения этого фреймворка для разработки, планирования и мониторинга пакетных процессов обработки больших данных (Big Data) с учетом современного DevOps-подхода. Читайте в нашей статье, зачем вообще нужна связка Apache Эйрфлоу с Kubernetes и как это реализовать технически....
Продолжая говорить про обучение Airflow, сегодня мы рассмотрим ключевые преимущества и основные проблемы этой библиотеки для автоматизации часто повторяющихся batch-задач обработки больших данных (Big Data). Также мы собрали для вас пару полезных советов, как обойти некоторые ограничения Airflow на примере кейсов из Mail.ru, IVI и АльфаСтрахования. Чем хорош Apache AirFlow:...
В этой статье мы поговорим про Apache AirFlow - эффективный инструмент для пакетных ETL-задач при работе с большими данными (Big Data): что это такое, как работает и чем полезен для инженера данных (Data Engineer). Также рассмотрим несколько практических примеров реального использования этой библиотеки для разработки, планирования и мониторинга batch-процессов. Что...
Сегодня мы рассмотрим еще один инструмент стека SQL-on-Hadoop: Apache Phoenix, позволяющий выполнять SQL-запросы к нереляционной СУБД HBase. Читайте в нашей статье, что представляет собой этот исполнительный механизм, как он работает и чем отличается от других Big Data решений подобного класса (Cloudera Impala, Apache Hive и Drill). Также мы собрали для...