Чтобы максимально приблизить обучение Airflow к практической работе дата-инженера, сегодня мы рассмотрим, какие еще есть альтернативы для оркестрации ETL-процессов и конвейеров обработки больших данных. Читайте далее, что такое Luigi, Argo, MLFlow и KubeFlow, где и как они используются, а также почему Apache Airflow все равно остается лучшим инструментом для оркестрации...
Чтобы сделать наши курсы по Apache Kafka для разработчиков Big Data систем еще более интересными, а обучение – запоминающимся, сегодня мы рассмотрим еще несколько примеров реализации микросервисной архитектуры на этой стриминговой платформе. А также поговорим про проблемы удаления данных в этой архитектурной модели, разобрав кейс компании Twitter по построению корпоративного...
Завершая цикл статей про MLOps, сегодня мы расскажем про 5 шаблонов практического внедрения моделей Machine Learning в промышленную эксплуатацию (production). Читайте далее, что такое Model-as-Service, чем это отличается от гибридного обслуживания и еще 3-х вариантов интеграции машинного обучения в production-системы аналитики больших данных (Big Data), а также при чем тут...
Рассказав, как оценить уровень зрелости Machine Learning Operations по модели Google или методике GigaOm, сегодня мы поговорим про этапы и особенности практического внедрения MLOps в корпоративные процессы. Читайте далее, какие организационные мероприятия и технические средства необходимы для непрерывного управления жизненным циклом машинного обучения в промышленной эксплуатации (production). 2 направления для...
Недавно мы рассказывали про модель зрелости MLOps от Google. Сегодня рассмотрим альтернативную методику оценки зрелости операций разработки и эксплуатации машинного обучения, которая больше похоже на наиболее популярную в области управленческого консалтинга модель CMMI, часто используемую в проектах цифровизации. Читайте далее, по каким критериям измеряется Machine Learning Operations Maturity Model и...
Цифровизация и запуск проектов Big Data предполагают некоторый уровень управленческой зрелости бизнеса, который обычно оценивается по модели CMMI. MLOps также требует предварительной готовности предприятия к базовым ценностям этой концепции. Читайте в нашей статье, что такое Machine Learning Operations Maturity Model – модель зрелости операций разработки и эксплуатации машинного обучения, из...
Пока цифровизация воплощает в жизнь концепцию DataOps, мир Big Data вводит новую парадигму – MLOps. Читайте в нашей статье, что такое MLOps, зачем это нужно бизнесу и какие специалисты потребуются при внедрении практик и инструментов сопровождения всех операций жизненного цикла моделей машинного обучения (Machine Learning Operations). Что такое MLOps, почему...
Продолжая разговор про обучение Spark на реальных примерах, сегодня мы рассмотрим, как работает этот Big Data фреймворк на Kubernetes, популярной DevOps-платформе автоматизированного управления контейнеризированными приложениями. Читайте в нашей статье, как запустить приложение Apache Spark в кластере Kubernetes (K8s) с помощью submit-скрипта и оператора, а также при чем здесь Docker-образ. Запуск...
Вчера мы рассказывали об основных сценариях запуска Apache Spark на Kubernetes и преимуществах этого варианта развертывания популярного Big Data фреймворка на DevOps-платформе автоматизированного управления контейнеризированными приложениями. Сегодня поговорим про обратную сторону всех этих преимуществ: читайте в нашей статье, каковы основные ограничения и главные недостатки запуска Apache Spark на Kubernetes (K8s)....
Чтобы сделать курсы по Spark еще более интересными и полезными, сегодня мы расскажем, зачем этот Big Data фреймворк разворачивают на Kubernetes (K8s) – платформе автоматизации развёртывания, масштабирования и управления контейнеризированными приложениями. Читайте в нашей статье про основные варианты использования и достоинства этого подхода к администрированию и эксплуатации Apache Spark. Зачем...