Цифровизация различных прикладных отраслей продолжается - сегодня мы нашли для вас интересные кейсы, как большие данные, машинное обучение и интернет вещей используется в жилой и коммерческой недвижимости. Чем Big Data, Machine Learning и Internet Of Things (IoT) полезны строителям и риелторам, и каким образом внедрение этих технологий поможет потребителям. Big...
Цифровизация возможна не только на предприятиях. Цифровая трансформация настигает даже города, чтобы сделать их более удобными для жителей и менее вредными для планеты. Сегодня мы подготовили для вас 8 интересных примеров по 4 разным направлениям об использовании больших данных (Big Data), машинного обучения (Machine Learning) и интернета вещей (Internet of...
Проанализировав предложения крупных PaaS/IaaS-провайдеров по развертыванию облачного кластера, сегодня мы сравним 4 наиболее популярных дистрибутива Hadoop от компаний Cloudera, HortonWorks, MapR и ArenaData, которые используются при развертывании локальной инфраструктуры для проектов Big Data. Как мы уже отмечали, эти дистрибутивы распространяются бесплатно, но поддерживаются на коммерческой основе. Некоторые отличия популярных дистрибутивов...
Мы уже рассказывали про общие достоинства и недостатки облачных Hadoop-кластеров для проектов Big Data и сравнивали локальные дистрибутивы. В продолжение этой темы, в сегодняшней статье мы подготовили для вас сравнительный обзор наиболее популярных PaaS/IaaS-решений от самых крупных иностранных (Amazon, Microsoft, Google, IBM) и отечественных (Яндекс и Mail.ru) провайдеров [1]. Сравнение...
Продолжая опровергать мифы о Hadoop, сегодня мы расскажем о том, как и где создать облачный кластер для Big Data и почему это выгодно. Концепция облачных вычислений стала популярна с 2006 года благодаря компании Amazon и постепенно распространилась на использование внешних платформ и инфраструктуры как сервисов (Platform as a Service, PaaS,...
Мы уже рассказывали, как большие данные (Big Data) сохраняются на диск. Сегодня поговорим о других файловых операциях в HDFS: репликации, чтении и удалении данных. За все файловые операции в Hadoop Distributed File System отвечает центральная точка кластера – сервер имен NameNode. Сами операции с конкретными файлами выполняются на локальном узле...
HDFS предназначена для больших данных (Big Data), поэтому размер файлов, которые хранится в ней, существенно выше чем в локальных файловых системах – более 10 GB [1]. Продолжая тему файловых операций и взаимодействия компонентов Hadoop Distributed File System, в этой статье мы расскажем, как осуществляется запись таких больших файлов с учетом блочного...
Благодаря архитектурным особенностям распределенной файловой системы Hadoop, допустимые файловые операции в ней отличаются от возможных действий с файлами на локальных системах. В этой статье мы рассмотрим файловые операции в HDFS и взаимодействие ее компонентов: узлов данных и сервера имен с клиентами - пользователями или приложениями. Файловые операции HDFS В отличие...
Сегодня мы поговорим о заблуждениях насчет базового инфраструктурного понятия хранения и обработки больших данных – экосистеме Hadoop и развеем 3 самых популярных мифа об этой технологии. А также рассмотрим применение Cloudera, Hortonworks, Arenadata, MapR и HDInsight для проектов Big Data и машинного обучения (Machine Learning). Миф №1: Hadoop – это...
Даже после очистки и нормализации данных, выборка еще не совсем готова к моделированию. Для машинного обучения (Machine Learning) нужны только те переменные, которые на самом деле влияют на итоговый результат. В этой статье мы расскажем, что такое отбор или выделение признаков (Feature Selection) и почему этот этап подготовки данных (Data...
Мы уже рассказали, что такое нормализация данных и зачем она нужна при подготовке выборки (Data Preparation) к машинному обучению (Machine Learning) и интеллектуальному анализу данных (Data Mining). Сегодня поговорим о том, как выполняется нормализация данных: читайте в нашем материале о методах и средствах преобразования признаков (Feature Transmormation) на этапе их...
Нормализация данных – это одна из операций преобразования признаков (Feature Transformation), которая выполняется при их генерации (Feature Engineering) на этапе подготовки данных (Data Preparation). В этой статье мы расскажем, почему необходимо нормализовать значения переменных перед тем, как запустить моделирование для интеллектуального анализа данных (Data Mining). Что такое нормализация данных и чем она...
Извлечение признаков (Feature Extraction) из текста – часто встречающаяся задача Data Mining, а именно этапа генерации признаков. Интеллектуальный анализ текста получил название Text Mining. В этом случае Feature Extraction относится к сфере NLP, Natural Language Processing – обработка естественного языка. Это отдельное направление искусственного интеллекта и математической лингвистики [1]. Здесь...
Генерация признаков – пожалуй, самый творческий этап подготовки данных (Data Preparation) для машинного обучения (Machine Learning). Этот этап еще называют Feature Engineering. Он наступает после того, как выборка сформирована и очистка данных завершена. В этой статье мы поговорим о том, что такое признаки, какими они бывают и как Data Scientist...
Выборка, полученная в результате первого этапа подготовки данных (Data Preparation), еще пока не пригодна для обработки алгоритмами машинного обучения, поскольку информацию необходимо очистить. Сегодня мы расскажем, что такое очистка данных (Data Cleaning) для Data Mining, зачем она нужна и как выполнять этот этап Data Preparation. Что такое очистка данных для...
Мы уже рассказывали о важности этапа подготовки данных (Data Preparation), результатом которого является обработанный набор очищенных данных, пригодных для обработки алгоритмами машинного обучения (Machine Learning). Такая выборка, называемая датасет (dataset), нужна для тренировки модели Machine Learning, чтобы обучить систему и затем использовать ее для решения реальных задач. Однако, поскольку в...
CRISP-DM, SEMMA и другие стандарты Data Mining не случайно выделяют подготовку данных в отдельную фазу. Data Preparation - весьма трудоемкий итеративный процесс, который занимает до 80% всех затрат ресурсов и времени в жизненном цикле Data Mining и включает следующие задачи обработки исходных («сырых») данных [1]: Выборка данных – отбор признаков...
Мы уже писали, как радиочастотные метки применяются в машиностроении, нефтегазовой отрасли, сельском хозяйстве и сфере безопасности. Продолжая серию публикаций об интернете вещей(IoT), мы представляем вам 5 кейсов отечественных и зарубежных компаний по использованию RFID-технологий в логистике и складском учете. RFID в легкой промышленности: международная логистика Немецкий производитель и продавец одежды,...
Продолжая тему интернета вещей, мы нашли еще 5 примеров успешного применения RFID-меток в промышленности: машиностроении, нефтегазовой отрасли, сельском хозяйстве и для обеспечения безопасности на массовых мероприятиях. Сегодня в нашем материале отечественные и зарубежные компании делятся своим опытом использования этих технологий Internet Of Things. RFID на производстве реактивных двигателей Зарубежное предприятие...
Интернет вещей (Internet Of Things) считает покупателей торговых центров, а средства больших данных (Big Data) и машинного обучения (Machine Learning) превращают эти цифры в реальную выгоду для бизнеса. Мы нашли еще 5 примеров успешного использования этих технологий в ритейле и делимся с вами опытом отечественных и зарубежных компаний. Интернет вещей...