7 критериев выбора потоковой базы данных

Что такое потоковая аналитика больших данных, какие бывают СУБД потоковой передачи, когда и зачем их использовать, а также что влияет на выбор этих инструментов хранения и аналитической обработки Big Data. Что такое потоковые базы данных и как они работают Мы уже упоминали, что аналитика данных в реальном времени может быть...

Python для Greenplum: обработка миллионов строк внутри БД с новой библиотекой

Чего не хватает в PL/Python и зачем нужна еще одна библиотека для создания Python-скриптов обработки данных в Greenplum. Возможности API GreenplumPython и сравнение с pandas. Что такое PL/Python и как это работает в Greenplum Мы уже писали, что Greenplum изначально поддерживает Python, предоставляя PL/Python – загружаемый процедурный язык, который позволяет...

Возможности и ограничения Dataset API в Apache Spark

В Apache Spark есть 3 структуры данных, каждая из которых имеет собственный API со своими достоинствами и недостатками. Сегодня разберем плюсы и минусы Dataset API, а также рассмотрим особенности JOIN-операций в нем. Почему Dataset API в Apache Spark работает только со Scala и Java Напомним, структура данных Dataset впервые появилась...

Работа с диском в резидентных СУБД на примере Memgraph и Redis

Недавно мы писали про резидентную графовую СУБД Memgraph, которая хранит данные в оперативной памяти. Сегодня рассмотрим, как выгрузить граф знаний из Memgraph на диск с помощью библиотеки GQLAlchemy, а также поговорим про персистентность другого популярного NoSQL-хранилища Redis, которое также является резидентным, но относится к семейству key-value.  Как сохранить данные из...

Распределенные снапсшоты в Greenplum для производительности и надежности

Как Greenplum расширяет MVCC-модель PostgreSQL для управления доступом к данным в многопользовательской среде, обеспечивая согласованность и изоляцию транзакций для нескольких сегментов в большом кластере. Преимущества моментальных снимков перед блокировками и их польза для резервного копирования. MVCC и транзакции в Greenplum с PostgreSQL Будучи основанной на PostgreSQL, о чем мы писали здесь,...

Мартовский выпуск Apache Flink: обзор релиза 1.17.0

23 марта 2023 года вышел очередной релиз Apache Flink. Разбираемся с главными новинками выпуска 1.17.0: полезные фичи, исправленные ошибки и улучшения для дата-инженера и разработчика распределенных приложений. Новинки пакетной обработки В Apache Flink 1.17 внесено множество изменений в области пакетной и потоковой обработки. В частности, добавлен новый пакетный Streaming Warehouse...

Унификация пакетной и потоковой обработки в Delta-архитектуре с LakeHouse

Как Lakehouse объединяет пакетную и потоковую обработку, какие проблемы возникают при реализации этой гибридной архитектуры данных и каким образом они решаются с помощью Delta-подхода и Apache Spark Structured Streaming. Краткая история появления дельта-архитектуры от лямбда- и каппа-моделей Мир больших данных постоянно развивается: появляются новые технологии и архитектурные шаблоны. В частности,...

Что такое Memgraph и чем она отличается от Neo4j: сравнение графовых СУБД

В рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях сегодня познакомимся с графовой резидентной СУБД Memgraph и сравним ее с Neo4j, определив достоинства, недостатки и варианты использования в задачах аналитики больших данных. Memgraph vs Neo4j Memgraph — это высокопроизводительная графовая СУБД с открытым исходным кодом, которая хранит и...

Графовая аналитика в Greenplum и PostgreSQL: обзор расширений и возможностей

Инструменты графовых алгоритмов для аналитики больших данных в PostgreSQL и Greenplum: обзор расширений и возможностей. Знакомимся с Apache AGE и MADlib. Графовая аналитика в PostgreSQL Реляционные СУБД отлично подходят для хранения данных с четкой структурой практически в любой предметной области и предлагают широкие возможности аналитической обработки таких данных. Но иногда реляционная...

EDA-архитектура данных в DWH: моделирование и реализация

Чем схема, применяемая к данным, при чтении отличается от схемы при записи, почему она вызывает GIGO-проблему в Data Lake, и как применить принципы функциональной дата-инженерии к архитектуре данных, управляемой событиями. Схема при чтении или при записи: главное отличие NoSQL-решений от реляционных СУБД NoSQL-решения и Apache Hadoop реализуют стратегию «схема при...

Планирование заданий Spark в EDA-архитектуре

Как организовать эффективное планирование заданий Apache Spark в микросервисной архитектуре, управляемой событиями, с помощью паттернов Idempotent Consumer и Transactional Outbox. Проблемы оркестрации Spark-заданий shell-скриптами и переход к EDA-архитектуре При большом количестве приложений Apache Spark, которые взаимодействуют друг с другом как самостоятельные микросервисы, растет сложность управления ими. В частности, shell-скрипты позволяют...

Neo4j vs TigerGraph: сравнение графовых СУБД

Что общего у Neo4j с TigerGraph и чем они отличаются: разбираемся с популярными графовыми СУБД и их возможностями для аналитики больших данных в рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях. Сравнение Neo4j с TigerGraph Подробно об архитектуре, принципах работы, функциональных возможностях и вариантах использования TigerGraph мы писали...

Обработка геоданных в Greenplum с PostGIS

Сегодня познакомимся с расширением PostGIS, которое позволяет PostgreSQL и Greenplum обрабатывать пространственные данные в геолокационных и логистических задачах. Как оно устроено и каковы ограничения его практического использования в MPP-СУБД. Что такое PostGIS и как это работает Как и PostgreSQL, Greenplum поддерживает геометрические типы данных, с помощью которых можно строить статичные...

Flink + dbt: разбор адаптера для SQL-конвейеров от GetInData

Недавно мы писали про использование AirFlow для оркестрации dbt-конвейеров. Сегодня познакомимся с адаптером dbt-flink, который позволяет запускать SQL-конвейеры в проекте dbt на Apache Flink. Зачем нужен адаптер dbt к Apache Flink и как он работает В аналитике данных огромную роль играет эффективный, стабильный и надежный ETL-процесс, реализовать который можно с...

Elasticsearch + Delta Lake: архитектура данных биотех-платформы Polly

Зачем биотехнологической платформе Polly от Elucidata понадобился API SQL-запросов в облачном сервисе Elasticsearch и как дата-инженеры реализовали его, развернув Delta Lake с AWS Atnena и S3. Что не так с SQL-запросами в облачном Elasticsearch на AWS Ежедневно биотехнологическая платформа Polly от Elucidata обрабатывает гигабайты биомолекулярных данных для биологов по всему...

Бесплатный помощник по настройке приложений Apache Spark от Joom

Чтобы сделать наши курсы для дата-инженеров и разработчиков распределенных приложений еще более полезными, сегодня мы расскажем про новый бесплатный сервис от маркетплейса Joom для поиска проблем с производительностью Spark-заданий. Разбираемся, как он работает и чем полезен дата-инженеру. 4 главных проблемы Spark-приложений, их последствия и трудности обнаружения Если количество Spark-приложений невелико,...

Зачем и как совмещать dbt с Apache AirFlow?

Что такое dbt, чем полезен этот инструмент для анализа и инженерии данных, зачем переносить в него бизнес-логику обработки данных и представлять эти задачи в DAG-конвейере Apache AirFlow. Python и SQL для анализа данных и дата-инженерии: versus или вместе? Распил крупных монолитных систем на множество автономных взаимодействующих друг с другом приложений...

Ищем кратчайший путь с Cypher-запросами в Neo4j

Сегодня в рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях, решим классическую задачу логистики в графовой базе данных Neo4j без использования методов ее специальной библиотеки Graph Data Science, а средствами Cypher-запросов. Постановка задачи: критерии оценки для поиска кратчайшего пути Поиск кратчайшего пути – это классическая задача на графах,...

Распределенные транзакции в Greenplum

Недавно мы писали про трудности реализации ACID-требований к транзакциям в распределенных базах данных и способах их решения. Сегодня рассмотрим, как это работает в Greenplum с Arenadata DB: уровни изоляции, идентификаторы транзакций, моментальные снимки и MVCC-модель управления параллелизмом. Как GP и Arenadata DB реализуют распределенные транзакции Будучи основанной на PostgreSQL, Greenplum...

Колоночные и строковые: виды хранения данных в СУБД

Как данные хранятся на диске при разной ориентации хранилища в СУБД: чем отличаются колоночные базы от строковых с точки зрения практического использования в дата-инженерии. Сравнительная таблица с примерами и выводами. Как данные хранятся на диске и при чем здесь ориентация СУБД Способы хранения данных в СУБД можно разделить на 2...