Сегодня я покажу на практическом примере, как реализовать потоковый захват изменения данных из таблицы PostgreSQL и их репликацию в Apache Kafka с помощью Debezium. Создаем и настраиваем свой коннектор на платформе Upstash. Постановка задачи Паттерн захвата измененных данных (CDC, Change Data Capture) является одним из самых распространенных в инженерии данных....
Одной из причин быстрой работы ClickHouse являются движки таблиц, оптимизированные на конкретные операции с данными. Сегодня рассмотрим, чем они отличаются и какой из них выбирать для разных сценариев. Движки БД ClickHouse Прежде чем разбираться с движками таблиц ClickHouse, вспомним само назначение этого термина. Движок БД или механизм хранения отвечает за...
Чем материализованное представление в ClickHouse отличается от обычного, зачем нужны LIVE-представления и как их использовать. Примеры SQL-запросов с VIEW для самой популярной колоночной аналитической СУБД. Представления vs словари в ClickHouse Поскольку ClickHouse, как типовая колоночная СУБД, используется для аналитической обработки огромных объемов данных в реальном времени, вопрос ускорения вычислений для...
Большинство ETL-конвейеров извлекают данные из реляционных баз в пакетном или микропакетном режиме. Читайте далее, по каким шаблонам реализовать операции извлечения. Моментальные снимки: периодическая выгрузка данных из исходных таблиц Полная периодическая выгрузка данных из одной или нескольких таблиц – это, пожалуй, самый простой метод извлечения изменяемых данных. По своей сути результат полной...
Методы отслеживания изменений в реляционных базах данных: столбцы аудиты, триггеры DDL-событий и WAL-журналы. Плюсы и минусы этих подходов, а также примеры реализации в Greenplum и PostgreSQL. 3 подхода к извлечению данных из реляционных баз Извлечение данных из реляционных баз является наиболее распространенной операцией в ETL-процессах. Поэтому при проектировании конвейеров обработки...
Сегодня познакомимся с возможностями и ограничениями open-source проект Diskquota, направленного на оптимизацию управления дисковым пространством базы данных Greenplum. Зачем ограничивать использование диска в Greenplum и как это сделать Эффективная утилизация аппаратных ресурсов, в т.ч. жесткого диска – один из факторов, позволяющих ускорить работу любой СУБД, в т.ч. Greenplum. Будучи популярным...
Анализ временных рядов нужен не только в Data Science, но и в мониторинге системных событий. Чем столбец с отметками времени в ClickHouse отличается от гипертаблиц в PostgreSQL и Greenplum c расширением TimescaleDB, и что выбирать для аналитики больших данных. ClickHouse для анализа временных рядов ClickHouse является колоночной СУБД для аналитической...
Что не так с архитектурой данных Lakehouse, зачем разработчики Apache Flink создали на основе табличного хранилища новую дата-платформу, чем хорош подход Streamhouse и как устроен Apache Paimon. Что такое архитектура данных Streamhouse Не успели дата-архитекторы освоиться с Lakehouse – архитектурой данных, которая объединяет преимущества хранилищ и озер данных, комбинируя масштабируемость...
Что такое словарь в ClickHouse, какие бывают словари, как их создать и каким командами к ним обращаться. Пара примеров со словарями в самой популярной колоночной аналитической СУБД. Что такое словарь в ClickHouse Как колоночная база данных, ClickHouse предназначена для аналитической обработки огромных объемов данных в реальном времени. Аналитические сценарии предполагают...
Как выполнить миграцию данных: лучшие практики и рекомендации на примере Greenplum. Особенности и принципы работы утилит gpbackup, gprestore и gpcopy. Миграция данных из Greenplum на 7 с утилитами gpbackup и gprestore Независимо от причины миграции данных из прикладной системы или корпоративного хранилища данных на новую технологию, эта процедура всегда остается...
Преимущества методологии Data Vault для проектирования архитектуры данных Lakehouse, а также лучшие практики ее использования с максимальной эффективностью для корпоративного хранилища. Принципы методологии Data Vault и их применение к проектированию DWH Существует множество различных методологий проектирования данных, которые можно использовать при разработке аналитической системы, например, модели звезды и снежинки, подходы...
Сегодня на практическом примере посмотрим, как запускать в DAG Apache AirFlow параллельное исполнение нескольких задач, применим пару лучших практик реализации ETL-конвейера для работы с PostgreSQL, а также разберем неоднозначности программного добавления соединений с внешними системами. Постановка задачи Предположим, необходимо получить аналитику по продажам товаров интернет-магазина, выгрузив данные из PostgreSQL в...
Насколько быстро ClickHouse выполняет SQL-запросы: тестирование СУБД в открытой онлайн-песочнице. Примеры запросов и время их выполнения. Работа с онлайн-песочницей Clickhouse: выполнение SQL-запросов Будучи реляционной аналитической СУБД, ClickHouse позволяет обрабатывать гигабайты данных в реальном времени. Архитектурные особенности, благодаря которым реализуется такая скорость, мы недавно разбирали здесь. Чтобы оценить это на практике,...
Сходства и различия популярных реляционных аналитических СУБД с открытым исходным кодом: что общего у Greenplum с ClickHouse, чем они отличаются, что и когда выбирать. Greenplum и Clickhouse: обзор возможностей для аналитики больших данных Обе СУБД являются реляционными и относятся к классу OLAP-систем, т.е. ориентированы на аналитические варианты использования, т.е. чтение...
Как отметки времени о событиях в архитектуре данных Lakehouse позволяют обеспечить безопасность Delta Lake: примеры извлечения и преобразования, а также лучшие практики. Почему отметки времени в логах системных событий так важны для архитектуры больших данных Архитектура Lakehouse построена на открытых стандартах и API, которые позволяют сочетать ACID-транзакции и управление данными...
24 октября 2023 года вышел очередной релиз Apache Flink. Знакомимся с главными новинками популярного Big Data фреймворка для разработки потоковых stateful-приложений: JDBC-драйвер для SQL-шлюза, хранимые процедуры для коннекторов, расширенная поддержка SQL, динамическое масштабирование с REST API и RocksDB, улучшение пакетных операций, а также другие полезные фичи Apache Flink 1.18. Улучшения...
Что такое VMware Greenplum Command Center, как использовать этот инструмент для эффективного управления MPP-СУБД и чем он отличается от Arenadata Command Center для Arenadata DB. Что такое центр управления Greenplum от VMware VMware Greenplum Command Center — это инструмент управления, который отслеживает показатели производительности системы, анализирует состояние кластера и позволяет...
Продолжая тему недавней статьи про настройки Greenplum 7, сегодня рассмотрим еще несколько конфигураций, которые позволят сделать эту MPP-СУБД еще быстрее и надежнее. Глобальные конфигурации Greenplum для настройки рабочих файлов Параметры глобальной конфигурации пользователя (GUC, Global User Configuration) Greenplum могут быть как глобальными, так и локальными по отношению к экземплярам сегмента. Глобальные...
Что такое Databricks SQL и как его ускорить, используя кэширование данных: типы хранилищ данных в платформе Lakehouse и виды кэшей. Что такое Databricks SQL Платформа Databricks Lakehouse предоставляет комплексное решение для хранения данных. Она построена на открытых стандартах и API. Эта архитектура данных сочетает ACID-транзакции и управление данными корпоративных хранилищ...
Что настроить в Greenplum 7, чтобы сделать эту MPP-СУБД еще эффективнее. Обзор наиболее популярных параметров конфигурации и рекомендации по установке их значений. Ограничения подключений и выполнения SQL-запросов: 6 параметров с перезагрузкой системы Будучи зрелой системой со множеством настроек, Greenplum предоставляет администратору и дата-инженеру широкие возможности по адаптации этой СУБД к...