Чтобы сделать обучение разработчиков Apache Spark, дата-аналитиков и инженеров Big Data еще более наглядным, сегодня рассмотрим проблему JOIN-соединений при неравномерном распределении данных по узлам кластера и способы ее решения. Читайте далее, как избавиться от перекосов и ускорить выполнение SQL-запросов в Spark-приложениях. Перекосы данных в Apache Spark: что это и чем...
Cегодня рассмотрим некоторые инструменты защиты данных в Greenplum. Читайте далее про особенности шифрования в этой MPP-СУБД и лучшие практики обеспечения информационной безопасности и защиты в этой системе хранения и аналитики больших данных. Администраторы и суперпользователи Greenplum Для надежной защиты данных, хранящихся в MPP-СУБД Greenplum, и обеспечения информационной безопасности кластера рекомендуется...
Apache AirFlow – один из самых популярных инструментов современного дата-инженера для планирования и оркестрации batch-процессов. Повторить успех этого фреймворка стремятся многие компании и Big Data энтузиасты: недавно мы рассказывали про ViewFlow от DataCamp, а также писали про Luigi, Argo, MLFlow и KubeFlow. Сегодня рассмотрим Dagster – еще одну альтернативу Apache...
Сегодня поговорим про обработку геопространственных данных с Apache Spark и рассмотрим, что такое Apache Sedona, как этот фреймворк связан с GeoSpark, какие форматы и структуры данных он поддерживает. Читайте далее про пространственные RDD, Spatial SQL-запросы и построение конвейеров обработки геоданных в облачных сервисах Amazon. Как обработать геопространственные данные в...
Развивая наш новый курс «Greenplum для инженеров данных», сегодня рассмотрим, почему в этой MPP-СУБД возникают проблемы нехватки памяти, каковы типовые способы их решения и чем очереди ресурсов отличаются от ресурсных групп. Читайте далее про схемы управления ресурсами в Greenplum и особенности параметра конфигурации statement_mem. Очереди vs Группы: 2 схемы управления...
Чтобы добавить в наши практические курсы по Apache Kafka еще больше интересных примеров, сегодня рассмотрим кейс немецкой ИТ-компании Mobimeo, которая несколько раз перекраивала свою систему аналитики больших данных, чтобы быстро узнавать о событиях клиентских приложений. Читайте далее, зачем дата-инженеры Mobimeo предпочли AVRO формату JSON, почему вместо брокера сообщений ActiveMQ решили...
В этой статье поговорим про Viewflow: что такое, как устроено, чем полезно аналитикам данных и Data Scientist’ам. Встречайте новый фреймворк на базе Apache AirFlow от DataCamp – американского edu-стартапа в области ИИ, который упрощает создание и управление материализованными представлениями на SQL, R и Python в концепции low code, т.е. практически...
Сегодня рассмотрим инструмент, который облегчает практическое использование Apache Spark, позволяя дата-аналитику и разработчику распределенных приложений быстро писать и выполнять SQL-запросы в рамках удобного веб-редактора. Читайте далее, что такое Hue, как он связан со Spark SQL и Hive, а также причем здесь Livy. Что Hue и при чем здесь Apache Livy...
В этой статье рассмотрим особенности подключения Apache Spark к внешним СУБД как к источникам данных для аналитики Big Data средствами SQL-модуля этого фреймворка. Читайте далее о том, что такое JDBC-драйвер, чем источник данных JDBC отличается от сервера Spark SQL JDBC, при чем здесь RPC-фреймворк и язык описания интерфейсов Thrift, а...
Сегодня разберем еще одну интересную тему из нашего нового курса «Greenplum для инженеров данных» по построению конвейеров приема данных для этой MPP-СУБД в рамках веб-интерфейса платформы автоматизированного управления потоками работ Apache NiFi. Читайте далее, как устроен коннектор VMware Tanzu Greenplum для Apache NiFi и какие возможности он предоставляет дата-инженеру. Что...
Партиционирование таблиц – надежный способ повышения производительности Greenplum, который тесно связан с особенностями распределения данных по сегментам кластера. Читайте далее, чем опасно неравномерное распределение данных и вычислений по узлам, а также как найти дата-инженеру и устранить эти перекосы в MPP-СУБД, чтобы повысить скорость выполнения SQL-запросов и решить проблемы с нехваткой...
Мы уже рассказывали про основы хранения и аналитики больших данных в Greenplum, а также рассматривали особенности индексации и сжатия данных в этой MPP-СУБД. Продолжая разговор о нашем новом курсе «Greenplum для инженеров данных», сегодня разберем лучшие практики разбиения данных на разделы и пример их распределения по сегментам кластера. Кратко о...
В продолжение вчерашней статьи по нашему новому курсу «Greenplum для инженеров данных», сегодня рассмотрим особенности индексации и сжатия данных в этой MPP-СУБД. Читайте далее, почему в Greenplum можно обойтись без индексов, когда выбирать RLE-сжатие вместо zlib, зачем сжимать рабочие файлы при выполнении SQL-запросов и что такое селективность индекса. ТОП-10 советов по...
Продвигая наш новый курс «Greenplum для инженеров данных», сегодня мы рассмотрим особенности организации таблиц в этой MPP-СУБД, типы данных и оптимальное расположение столбцов. Читайте далее, чем heap storage отличается от append-optimized, когда выбирать колоночную, а когда – строковую модель хранения данных для таблицы, почему BIGINT с TIMESTAMP следует размещать перед...
Продолжая разбирать особенности бакетирования таблиц в Apache Spark, сегодня мы рассмотрим несколько примеров, как дата-инженер и аналитик данных могут работать с этим методом оптимизации SQL-запросов. Также читайте далее, какие конфигурации Apache Spark SQL связаны с бакетированием таблиц и что нового появилось в 3-ей версии этого Big Data фреймворка, чтобы такой...
Бакетирование таблиц в Apache Spark – один из самых популярных методов оптимизации производительности задач последовательного чтения данных. Сегодня поговорим про сложности бакетирования с точки зрения дата-инженера, а также рассмотрим факторы, от которых зависит оптимальное количество бакетов. Большая проблема маленьких файлов и бакетирование таблиц в Apache Spark Напомним, бакетирование ускоряет выполнение...
Развивая наши курсы по Apache Spark, сегодня мы рассмотрим несколько особенностей, с разработчик которыми может столкнуться при выполнении обычных операции, от чтения архивированного файла до обращения к сервисам Amazon. Читайте далее, что не так с методом getDefaultExtension(), зачем к AWS S3 так много коннекторов и почему PySpark нужно дополнительно конфигурировать...
В этой статье продолжим говорить про обучение разработчиков Apache Spark и рассмотрим, какие сегменты памяти есть в этом Big Data фреймворке и как с ними работать наиболее эффективно. Читайте далее, почему процессы PySpark и SparkR потребляют внешнюю память, чем пользовательская память кучи JVM отличается от памяти хранилища и какие конфигурации...
Продолжая разговор про практическое обучение разработчиков Apache Spark, сегодня рассмотрим пример повышения скорости выполнения SQL-запросов к большому датафрейму. Читайте далее, как определить и исправить асимметрию распределения данных по разделам, зачем добавлять контрольные точки в длинные DAG и в чем здесь опасность, чем хороша широковещательная трансляция, для чего фильтровать данные перед...
На практике каждый аналитик Big Data и Data Scientist часто сталкивается с удалением дублирующихся значений в датасете. Поэтому, чтобы добавить в наши курсы по Apache Spark еще больше полезных примеров, сегодня рассмотрим 5 простых способов решения этой востребованной задачи. Читайте далее, чем distinct() отличается от dropDuplicates(), а reduceByKey() - от...