Ускоряем Apache Spark с помощью RAPIDS на GPU

Как использовать преимущества графических процессоров для Spark-приложений аналитики больших данных и машинного обучения с помощью библиотек RAPIDS. Знакомимся с ускорителем Spark RAPIDS и его возможностями сделать популярный вычислительный движок еще быстрее. Что такое RAPIDS Accelerator для Apache Spark и как он работает Системы Machine Learning, особенно проекты глубокого обучения, уже...

Безопасный обмен большими данными с открытым протоколом Delta Sharing

Что такое Delta Sharing, зачем нужен и как устроен этот открытый стандарт, а также как его использовать для централизованного управления доступом к данным в архитектуре Data Mesh. Что такое Delta Sharing и при чем здесь Data Lake Чтобы упростить обмен большими данными между разными компаниями в режиме реального времени и...

Тонкости тестирования приложений Apache Flink SQL

Как протестировать работу приложения Apache Flink, используя SQL-клиентов, Table API, тестовые наборы операторов и режим локального мини-кластера. Разбираем особенности ручного и автоматизированного тестирования Flink SQL на уровне отдельных функций, модулей и их интеграционного взаимодействия. Модульное и интеграционное тестирование приложений Apache Flink SQL Тестирование является неотъемлемой частью любого процесса разработки ПО,...

Еще больше больших данных: масштабирование кластера Greenplum

Какие подходы позволяют увеличить емкость СУБД, чтобы повысить объем хранящихся в ней данных и ускорить вычисления. Разбираем тонкости масштабирования распределенной базы данных с массово-параллельной обработкой Greenplum: действия администратора по добавлению новых узлов в кластер. Как увеличить емкость базы данных: 4 подхода к масштабированию Чтобы увеличить емкость СУБД, т.е. объем хранимых...

Зачем вам TigerGraph: обзор графовой MPP-СУБД

Продолжая разговор про языки запросов к графовым базам данных, сегодня познакомимся с GSQL, который поддерживается в MPP-СУБД TigerGraph. Как работает эта распределенная NoSQL-база данных и каким образом реализует ACID-требования к транзакциям в операциях с графами. Архитектура и принципы работы графовой MPP-СУБД TigerGraph — это распределенное графоориентированное хранилище данных с массивно-параллельной...

Ускоряем SQL-запросы в Apache Spark с проектом Gluten

Как повысить скорость выполнение SQL-запросов в Spark-приложениях, используя Gluten – новый вычислительный движок, объединяющий несколько векторизированных механизмов выполнения с поддержкой аппаратных ускорителей. Что такое Gluten и как он появился в Apache Spark Когда данных много, их обработка может длиться долго. Чтобы ускорить вычисления с Big Data, разработчики распределенных приложений и...

Устраняем дубли в потоковых данных с Apache Flink SQL

Чем опасны дубли данных при их потоковой обработке и как реализовать дедупликацию в Apache Flink SQL. Смотрим на практическом примере для обучения дата-инженеров и разработчиков распределенных приложений. Потоковая дедупликация данных в Apache Flink SQL Apache Flink можно назвать уникальный фреймворком для разработки распределенных приложений в области Big Data, который унифицирует...

Горячие точки в Apache HBase и 7 способов их устранения

Что такое горячие точки в Apache HBase, почему они возникают, чем опасны и как их избежать. Для этого заглянем под капот NoSQL-хранилища, чтобы разобраться с особенностями хранения данных по ключу строки. Что такое горячие точки в кластере Apache HBase и почему они случаются Apache HBase представляет собой колоночно-ориентированное мультиверсионное хранилище...

Разделы таблиц в Greenplum 7: новинки и возможности

В 7-м релизе Greenplum, о котором мы писали здесь и здесь, вышло много изменений. Одним из них стал целый набор обновленных функций, связанных с партиционированием таблиц. Читайте далее, как Greenplum стал еще на шаг ближе к PostgreSQL и что изменилось в части синтаксиса SQL-запросов. Управление разделами в Greenplum и PostgreSQL...

5 популярных языков запросов к графам

Для продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях, сегодня рассмотрим 5 самых известных языков запросов для управления данными графов. Что общего у GraphQL, Gremlin, Cypher, SPARQL и AOL, а также чем они отличаются. GraphQL Языки запросов, используемые для управления данными графов (GQL, Graph Query Language), определяют способ извлечения...