Как сделать запуск UDF-функций Python или R на узлах сегмента Greenplum более быстрым и безопасным с помощью Docker-контейнеров и расширения PL/Container. Что такое PL/Container и как это использовать в Greenplum Запуск пользовательского кода для базы данных всегда имеет риск нарушения информационной безопасности. Если речь идет о стеке Big Data, ущерб...
Как материализованные представления в потоковой базе данных с CDC-подходом и шаблоном CQRS позволяют реализовать масштабируемую и высокопроизводительную систему с микросервисной архитектурой для транзакций и аналитики данных в реальном времени. Разбираемся с паттернами проектирования микросервисов на примере интернет-магазина. Что не так с шаблоном композиция API и другие проблемы микросервисной архитектуры в...
12 апреля 2023 года вышел очередной релиз Apache Spark. Разбираемся с самыми главными новинками этого выпуска, которые порадуют аналитиков, разработчиков, инженеров данных и специалистов по Data Science. Расширенная поддержка Python, улучшения Spark SQL и Structured Streaming. Обновления Spark SQL и новинки для пользователей Python Apache Spark 3.4.0 — это пятый...
Через какие интерфейсы пользователи и клиентские приложения могут подключиться к базе данных Greenplum, как происходит подключение, какие параметры и конфигурации надо задать при этом, а также почему для этого так важна библиотека libpq. Параметры подключения к Greenplum Пользователи могут подключаться к базе данных Greenplum с помощью клиентской программы, совместимой с...
Сегодня разберем проблемы микросервисной архитектуры для платформ данных и способы их решения, а также вспомним 5 популярных шаблонов развертывания, которые могут смягчить риски от внедрения новых версий многокомпонентной системы. Проблемы микросервисной архитектуры для платформы данных и способы их решения При всех плюсах микросервисной архитектуры (автономность, гибкость, масштабируемость, простота развертывания, технологическая...
Чем тип JSONB отличается от JSON и почему это так важно для хранения и обработки данных гибкой структуры в Greenplum. Примеры SQL-запросов к JSON-данным и особенности синтаксиса JSONPath. Чем JSONB отличается от JSON и почему это так важно? Будучи основанной на PostgreSQL, Greenplum имеет множество аналогичных возможностей, включая поддержку работы...
Почему на самом деле нельзя избежать shuffle-операций в Spark SQL, в чем разница перетасовки RDD и датафреймов, а также как сократить негативное влияние перемешивания данных по узлам кластера, настроив конфигурации распределенного приложения. Что такое shuffle-операции в Apache Spark SQL и зачем они нужны Распределенный характер вычислительного движка Apache Spark позволяет...
Проблемы отладки конвейеров обработки данных в Apache AirFlow и способы их решения средствами самого фреймворка. Как дата-инженеру настроить мониторинг системных событий на уровне DAG или отдельной задачи: операторы, кластерные политики и обратные вызовы. Отладка конвейеров обработки данных в Apache AirFlow: проблемы и возможности Практикующий дата-инженер знает, как бывает сложно найти...
Чем динамичный ELT-подход лучше традиционного ETL, в чем разница между этими архитектурами конвейеров данных и зачем нужно профилирование данных при построении высокоэффективных дата-пайплайнов. Чем ETL отличается от ELT: ликбез для дата-инженера Аналитика больших данных невозможна без ETL/ELT-процессов, т.е. извлечения данных из разных источников (базы данных, файлы, API, прикладные системы), их...
Зачем в Greenplum 7 добавлены вычисляемые (генерируемые) столбцы, как их использовать, и чем они опасны: достоинства, недостатки и ограничения этой возможности. Что такое генерируемые столбцы Поскольку Greenplum основана на PostgreSQL, эта MPP-СУБД имеет множество похожих функций. В частности, в 7-ю версию Greenplum добавлена возможность сохранения вычисляемых (генерируемых) столбцов, которые вычисляются...