Как сократить стоимость и время обработки данных в Spark-приложений: кейс AppsFlyer

Сегодня рассмотрим кейс международной ИТ-компании AppsFlyer, которая создает SaaS-решения для маркетинговой аналитики в режиме онлайн. В этой статье команда разработки аналитического продукта Data Locker делится опытом оптимизации ETL-приложений Apache Spark для снижения стоимости обработки данных и ускорения вычислений. Предыстория: слишком много файлов в ETL-решении на Spark и AWS S3 в...

Знай свое место: локальность данных в Apache Spark

В рамках обучения разработчиков Spark-приложений и дата-инженеров, сегодня рассмотрим, что такое локальность данных и как это влияет на производительность заданий. А также разберем, где в UI Apache Spark посмотреть нахождение данных для распределенных вычислений и какие параметры конфигурации следует настроить, чтобы повысить скорость их выполнения. Что такое локальность данных в...

Дыра в Apache Log4j: опасность для Hadoop, Spark, Kafka, Neo4j и других технологий Big Data

В начале декабря 2021 года мир ИТ взволновала новость о критической уязвимости CVE-2021-44228 в библиотеке Apache Log4j. Разбираемся, что это такое и чем опасно для систем хранения и аналитики больших данных на Apache Hadoop, Kafka, Spark, Elasticsearch и Neo4j. Критическая уязвимость в библиотеке Apache Log4j: чем опасна CVE-2021-44228 9 декабря...

Насыпать соль на рану: решаем проблему перекоса данных в Apache Spark с помощью криптографии

В этой статье для разработчиков Spark-приложений рассмотрим, как избежать искаженных данных с помощью простого и давно известного в криптографии приема, который принято называть «соль». Почему неравномерное распределение данных может вызвать ошибку нехватки памяти и как сбалансировать распределение ключей, добавив столбец со случайными числами. Перекосы и перемешивания Искажение или неравномерное распределение...

Фильтр Блума в Apache Spark для Parquet-файлов

Сегодня рассмотрим, что такое фильтр Блума и как эта структура данных используется в Apache Spark для чтения Parquet-файлов. Про хеширование, UUID, достоинства и недостатки Bloom-фильтра для бинарного колоночного формата хранения больших данных в распределенных системах. Что такое фильтр Блума Фильтр Блума активно используется во многих информационных системах для быстрого поиска...

Как организовать Feature Engineering на SQL-запросах: инженерия Data Science

В рамках наших курсов для дата-инженеров и специалистов в области Data Science, сегодня рассмотрим, как реализовать один из важнейших этапов машинного обучения – Feature Engineering. Читайте далее, как генерировать признаки для ML-модели с помощью SQL, напрямую обращаясь к источникам данных и хранилищам фич, а также что такое Apache Hivemall и...

Найти и обезвредить Spill в Spark-приложениях: причины и решения

В этой статье для разработчиков распределенных приложений разберем проблему с производительностью Apache Spark из-за неоптимальной стратегии переброса данных между оперативной и постоянной памятью. Что такое spill-эффект, почему он случается, как его идентифицировать и устранить. Что такое spill и почему он случается: под капотом Spark-приложений При том, что spill можно рассматривать...

Все сложно: Morpheus, Cypher и Apache Spark GraphX

В рамках нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим, как язык запросов Cypher должен был появиться в Apache Spark 3.0, зачем это нужно и почему до сих пор не реализовано. Краткая история проекта Morpheus, его связь с Neo4j, а также модулями Spark GraphX и GraphFrames. Что такое Morpheus...

Польза умных сенсоров Apache Airflow: Smart Sensor для LRLW-задач

Добавляя в наши курсы для дата-инженеров еще больше полезных примеров, сегодня рассмотрим, как Airbnb развивает Apache AirFlow и на практике используют эту платформу для создания, планирования и мониторинга конвейеров данных. Что такое Smart Sensor и как умные датчики экономят ресурсы на выполнение долгосрочных легковесных задач. Легкие, долгие и ресурсоемкие: проблемы...

Интеграция Neo4j с Apache Spark: обзор коннектора 4.1

Продвигая наш новый курс по графовой аналитике больших данных в бизнес-приложениях, сегодня заглянем под капот коннектора Neo4j к Apache Spark. Сценарии использования, принципы работы, поддержка потоковой передачи Spark и другие новинки версии 4.1 для построения эффективных аналитических коннекторов с помощью алгоритмов на графах. Как работает коннектор Neo4j к Apache Spark: краткий обзор Осенью...

Поиск по сайту