Сегодня обсудим ключевые тренды развития дата-инженерии и инструментальные средства их реализации. Как это применяется на практике, рассмотрим на примере эволюции хранилища данных в индонезийской ИТ-компании Bukalapak, от локального кластера Apache HBase до Лямбда-архитектуры в облаке Google Cloud Platform с Kafka, Spark и AirFlow. 7 главных драйверов развития дата-инженерии В наши...
Недавно мы писали про сложности обработки вложенных структур данных в JSON-файлах при работе с Apache Hive и Spark. В продолжении этой темы про парсинг, сегодня поговорим, как быстро преобразовать данные формата JSON в простой читаемый файл CSV или плоскую таблицу, чтобы анализировать их с помощью типовых методов DataFrame API или...
Чтобы сделать наши курсы для дата-инженеров еще более интересными, сегодня рассмотрим практический пример построения инфраструктуры для автоматической диагностики и исправления ошибок пакетной и потоковой обработки данных в Netflix. Комплексная система на базе Apache Spark, Kafka, Flink, Druid, сервисов AWS и других технологий Big Data. Предыстория: зачем Netflix разработал Pensive Обработка...
В рамках обучения разработчиков распределенных Spark-приложений, сегодня рассмотрим, как добавить функции из пользовательских JAR-файлов в кластер AWS EMR. Достоинства и недостатки действия начальной загрузки EMR с переопределением конфигурации Spark, а также расширенное управление зависимостями через spark-submit. Трудности обращения к пользовательским JAR в Amazon EMR с Apache Spark и Livy На...
2022 год только начался, а John Snow Labs уже радует разработчиков ML-приложений новым релизом библиотеки Spark NLP. Ключевые фичи 3.4.0 для версии Apache Spark 3.2.x на Scala 2.12: новые GPT-2 трансформеры, аннотаторы для ALBERT, XLNet, RoBERTa, XLM-RoBERTa и Longformer, расширенный хаб готовых Machine Learning моделей и конвейеров, а также исправление...
В этой статье для разработчиков Spark-приложений и дата-инженеров рассмотрим особенности взаимодействия с облачным объектным хранилищем больших данных AWS S3. Как повысить эффективность и ускорить выполнения Spark-заданий на чтение данных из S3: рекомендации Pinterest. Пара советов по работе Apache Spark с AWS S3 Прежде чем перейти к опыту дата-инженеров фотохостинга Pinterest,...
Чем хороши JSON-файлы и как с ними работать в Apache Spark и Hive: проблемы обработки вложенных структур данных и способы их решения на практических примерах. Как автоматизировать переименование некорректных названий полей во вложенных структурах данных JSON-файлов на любом количестве таблиц со множеством полей, чтобы создать таблицу в Hive Metastore и...
В рамках обучения дата-аналитиков и разработчиков Spark-приложений, сегодня рассмотрим одну из агрегатных функций обработки данных в этом распределенном вычислительном фреймворке. Чем aggregateByKey() отличается от reduceByKey() и groupByKey(), и когда стоит ее использовать. Как устроена функция aggregateByKey(): назначение и синтаксис Функция aggregateByKey() - одна из агрегатных функций, наряду с reduceByKey() и...
В этой статье по обучению дата-инженеров разберем, что такое Apache Beam, чем этот фреймворк отличается от AirFlow и что между ними общего. На первый взгляд Apache Airflow и Beam являются конкурентами: они предназначены для организации процессов обработки данных в определенном порядке. Оба инструмента являются open-source проектами, широко используются и поддерживаются...
Добавляя новые интересные примеры в наши курсы для дата-аналитиков, разработчиков распределенных приложений и администраторов SQL-on-Hadoop, сегодня рассмотрим опыт видеоаналитики в компании Vimeo с использованием Apache Spark. Как быстро запросить множество данных из Apache HDFS через Phoenix и Spark из моментальных снимков HBase с минимальным влиянием на кластер. Аналитика очень больших...