Как отметки времени о событиях в архитектуре данных Lakehouse позволяют обеспечить безопасность Delta Lake: примеры извлечения и преобразования, а также лучшие практики. Почему отметки времени в логах системных событий так важны для архитектуры больших данных Архитектура Lakehouse построена на открытых стандартах и API, которые позволяют сочетать ACID-транзакции и управление данными...
Как управлять средой PySpark-приложения в распределенной вычислительной среде: проблемы зависимостей Python в кластере и способы их решения с помощью сеансов Spark Connect в версии 3.5.0. Управление зависимостями в Python и PySpark Каждый Python-разработчик хотя бы раз сталкивался с проблемой несовместимости пакетов. Эта ситуация называется ад зависимостей (dependency hell), когда вновь...
Что не так с Neosemantics и зачем нужна очередная библиотека для Neo4j: знакомство с Python-пакетом для RDF-графов rdflib-neo4j. Возможности, ограничения и пример использования. Что не так с Neosemantics и зачем нужна очередная библиотека для Neo4j Что такое RDF-графы, триплеты и плагин Neosemantics для работы с этими концепциями в графовой СУБД...
Что представляет собой MLOps-платформа Tecton и как запустить на ней конвейеры машинного обучения, используя провайдер Tecton-AirFlow, чтобы управлять ресурсами Tecton в этом ETL-оркестраторе. Что такое Tecton и при чем здесь MLOps Поскольку концепция MLOps направлена на безбарьерную автоматизацию всех этапов жизненного цикла систем машинного обучения, для этого нужны специализированные средства....
Что такое набор данных в Apache AirFlow и как эта концепция обмена данными между задачами разных DAG улучшает управляемость ETL-конвейера и повышает производительность фреймворка. Что такое набор данных в Apache AirFlow и где это использовать Набор данных (Dataset) – это замена логической группировки данных в Apache AirFlow. Наборы данных могут...
Как расширить возможности Apache NiFi, используя Python: знакомимся с библиотекой NiPyAPI. Возможности, принципы работы и примеры использования NiPyAPI в управлении средой NiFi: очистка от неиспользуемых компонентов. Python в Apache NiFi Хотя официальная поддержка Python ожидается в релизе 2.0, о чем мы писали здесь, использовать этот язык программирования в Apache NiFi...
Пример ETL-процесса в DAG Apache AirFlow: извлечение данных о выполненных заказах из PostgreSQL, преобразование в JSON-документ и загрузка в NoSQL-хранилище Elasticsearch в виде JSON-документа с отправкой уведомления в Telegram. Разработка и запуск кода в Google Colab. Постановка задачи и проектирование конвейера в виде DAG AirFlow О том, как построить простой...
Мы уже писали про особенности тестирования систем машинного обучения. Чтобы не повторяться, сегодня рассмотрим фреймворки для реализации идей MLOps, а также рассмотрим, какие тесты должны быть пройдены для проверки работоспособности ML-продукта. 3 категории тестов для ML-систем Согласно концепции MLOps, полный конвейер разработки включает в себя три основных компонента: конвейер данных,...
Насколько быстро работает Apache Kafka в облачной платформе Upstash: пишем простой пример для пары продюсер-потребитель на Python и измеряем задержку. Миллисекундное отставание при публикации и минутная задержка обработки данных на потребителе. Задержка публикации сообщений в Kafka Чтобы измерить задержку асинхронного обмена данными в системе с EDA-архитектурой из продюсера и потребителя...
Каждому специалисту по Data Science и инженеру данных знакома Python-библиотека pandas. Однако, для работы с большими данными она не очень подходит из-за высокого потребления памяти. Тем не менее, отказаться от старых привычек сложно. Поэтому разбираемся, зачем использовать API Pandas в Apache Spark и как это сделать наиболее эффективно. Чем отличается...