Насколько applyInPandas в Spark быстрее apply в pandas: простой эксперимент

Чем метод applyInPandas() в Spark отличается от apply() в pandas и насколько он быстрее обрабатывает данные: сравнительный тест на датафрейме из 5 миллионов строк. Методы применения пользовательских функций к датафреймам в Spark и pandas Мы уже отмечали здесь и здесь, что Apache Spark позволяет работать с популярной Python-библиотекой pandas, поддерживая...

Управление кодом в Apache AirFlow

Как добавить пользовательский код в Apache AirFlow и где его хранить: лучшие практики и рекомендации для дата-инженера с примером создания и импорта своего пакета. Как хранить общий код в AirFlow Недавно мы писали про сложности управления DAG в многопользовательской среде Apache AirFlow. Однако, даже когда речь идет про однопользовательскую работу...

Зачем вам Chdb или как работать с Clickhouse без развертывания сервера СУБД

Что такое Chdb, зачем нужна эта библиотека и как ее использовать в коде Python-приложения для анализа больших данных в ClickHouse без разворачивания полноценного сервера этой колоночной СУБД. Как и зачем работать с ClickHouse без сервера СУБД ClickHouse является мощным инструментом аналитики больших данных, который требует соответствующей инфраструктуры. Однако, иногда нужно...

Многопользовательское развертывание Apache AirFlow: проблемы и решения

Что не так с работой Apache AirFlow в многопользовательской среде, зачем предоставлять каждой команде свое развертывание ETL-фреймворка, каковы недостатки этого решения и как организовать мультитенантный кластер. Почему Apache Airflow не предназначен для многопользовательского использования В современной дата-инженерии Apache AirFlow стал наиболее популярным инструментом для пакетных ETL-процессов. Чтобы использовать его наиболее...

Разделение DataStream в Apache Flink на побочные выходные потоки

Что такое дополнительный выходной поток DataStream в Apache Flink, зачем это нужно, чем механизм SideOutput лучше операторов filter и split, а также как его использовать: примеры на Python.  Что такое дополнительный выходной поток DataStream в Apache Flink и зачем это нужно Хотя выходные результаты большинства операторов API DataStream в Apache...

Публикация protobuf-сообщений и использование реестра схем Kafka

Как публиковать в топик Kafka сообщения в формате Protobuf, используя реестр схем и библиотеку confluent-kafka. Пример Python-продюсера, конфигурационного YAML-файла для Docker-развертывания Kafka Confluent и тунелирование портов локального компьютера. Подготовка инфраструктуры и определение схемы данных Чтобы публиковать в свое Docker-развертывание Kafka Confluent данные, используя реестр схем, нужно сперва внести изменения в...

Настройка планировщика Apache AirFlow

Как устроен планировщик заданий Apache AirFlow, от чего зависит его производительность и какие конфигурации помогут ее улучшить: настройки, приемы, рекомендуемые значения и лучшие практики. Как работает планировщик Apache AirFlow Apache AirFlow как фреймворк оркестрации пакетных процессов включает несколько компонентов. Одним из них является планировщик (scheduler), который отслеживает все задачи и...

ETL по расписанию: 4 способа планирования запусков DAG в Apache AirFlow

Чем планирование запуска DAG в Apache AirFlow с объектом timedelta отличается от использования cron-выражений, в чем разница CronTriggerTimetable и CronDataIntervalTimetable, а также как создать собственный класс расписания. Объект timedelta vs cron-выражение: задание расписания запуска DAG в Apache AirFlow Apache AirFlow идеально подходит для классических пакетных ETL-сценариев, например, когда надо извлечь...

Сериализация в Apache AirFlow

Как Apache AirFlow сериализует и десериализует данные, зачем с версии 2 включена обязательная сериализация DAG в JSON, почему для пользовательской сериализации рекомендуются словари или примитивы и что поможет сократить нагрузку на базу данных метаданных через настройку параметров сериализации в конфигурационном файле фреймворка. Сериализация данных в Apache AirFlow Чтобы сохранить данные...

Apache AirFlow 2.10: что нового?

24 августа вышел новый релиз Apache AirFlow. Знакомимся с новинками версии 2.10: гибкая настройка исполнителей для всей среды, конкретного DAG и отдельных задач, а также динамическое планирование набора данных и улучшения GUI. Гибкая настройка исполнителей Одной из самых главных новинок Apache AirFlow 2.10 стала конфигурация гибридного исполнения, позволяющая использовать несколько...