Публикация protobuf-сообщений и использование реестра схем Kafka

Как публиковать в топик Kafka сообщения в формате Protobuf, используя реестр схем и библиотеку confluent-kafka. Пример Python-продюсера, конфигурационного YAML-файла для Docker-развертывания Kafka Confluent и тунелирование портов локального компьютера. Подготовка инфраструктуры и определение схемы данных Чтобы публиковать в свое Docker-развертывание Kafka Confluent данные, используя реестр схем, нужно сперва внести изменения в...

Настройка планировщика Apache AirFlow

Как устроен планировщик заданий Apache AirFlow, от чего зависит его производительность и какие конфигурации помогут ее улучшить: настройки, приемы, рекомендуемые значения и лучшие практики. Как работает планировщик Apache AirFlow Apache AirFlow как фреймворк оркестрации пакетных процессов включает несколько компонентов. Одним из них является планировщик (scheduler), который отслеживает все задачи и...

ETL по расписанию: 4 способа планирования запусков DAG в Apache AirFlow

Чем планирование запуска DAG в Apache AirFlow с объектом timedelta отличается от использования cron-выражений, в чем разница CronTriggerTimetable и CronDataIntervalTimetable, а также как создать собственный класс расписания. Объект timedelta vs cron-выражение: задание расписания запуска DAG в Apache AirFlow Apache AirFlow идеально подходит для классических пакетных ETL-сценариев, например, когда надо извлечь...

Сериализация в Apache AirFlow

Как Apache AirFlow сериализует и десериализует данные, зачем с версии 2 включена обязательная сериализация DAG в JSON, почему для пользовательской сериализации рекомендуются словари или примитивы и что поможет сократить нагрузку на базу данных метаданных через настройку параметров сериализации в конфигурационном файле фреймворка. Сериализация данных в Apache AirFlow Чтобы сохранить данные...

Apache AirFlow 2.10: что нового?

24 августа вышел новый релиз Apache AirFlow. Знакомимся с новинками версии 2.10: гибкая настройка исполнителей для всей среды, конкретного DAG и отдельных задач, а также динамическое планирование набора данных и улучшения GUI. Гибкая настройка исполнителей Одной из самых главных новинок Apache AirFlow 2.10 стала конфигурация гибридного исполнения, позволяющая использовать несколько...

Отправка уведомлений в Apache AirFlow

Как оповестить дата-инженера о задержке и результате выполнения задачи или всего DAG пакетного конвейера обработки данных: варианты отправки уведомлений в Apache AirFlow и особенности их применения. Варианты отправки уведомлений в Apache AirFlow Даже когда конвейер обработки данных разработан и успешно протестирован, в ходе его эксплуатации в рабочей среде неизбежно возникают...

UDF во фреймворках Big Data: благо или необходимое зло?

Почему пользовательские функции лучше применять как можно реже, каковы их возможности и ограничения: краткий обзор особенностей разработки и эксплуатации UDF в Apache Spark SQL, ksqlDB, Flink SQL, Greenplum и ClickHouse. Чем полезны и опасны пользовательские функции в обработке больших данных? Пользовательские функции (User-Defined Functions, UDF) позволяют разработчику расширить возможности фреймворка,...

YAML вместо Python: LowCode-разработка DAG в Apache AirFlow с DAG Factory

Как написать DAG в Apache AirFlow без программирования, определив его конфигурацию в YAML-файле, и автоматически получить пакетный конвейер обработки данных с помощью Python-библиотеки DAG Factory. Демократизация разработки ETL-конвейеров или что такое DAG Factory в Apache AirFlow Хотя Apache AirFlow и так считается довольно простым фреймворком для оркестрации пакетных процессов и...

Потоковые соединения из Kafka на Python: практический пример

Сегодня я покажу простую демонстрацию потоковой агрегации данных из разных топиков Apache Kafka на примере Python-приложений для соединения событий пользовательского поведения с информацией о самом пользователе. Постановка задачи Рассмотрим примере кликстрима, т.е. потокового поступления данных о событиях пользовательского поведения на страницах сайта. Предположим, данные о самом пользователе: его идентификаторе, электронном...

Расширенные функции Apache Flink

Что такое rich-функции в Apache Flink, зачем они нужны, чем отличаются от обыкновенных UDF и как с ними работать: простой пример на PyFlink с запуском в Google Colab. Rich-функции в Apache Flink Будучи очень мощным фреймворком для разработки распределенных потоковых приложений, Apache Flink не только предоставляет широкий набор stateful-функций, но...

Поиск по сайту