Сегодня разберемся, когда для Data Science-проектов вместо Apache Spark, самого популярного вычислительного движка аналитики больших данных, стоить выбрать Dask – легковесную Python-библиотеку для параллельных вычислений. И, наоборот, в каких случаях инженер данных и Data Scientist получают преимущества, выбирая Spark. Что такое Dask и зачем он нужен Data Scientist’у Прежде чем...
16 июня 2022 года вышла новая версия Apache Spark – 3.3.0. Разбираем главные фичи этого минорного релиза, особенно важные для дата-инженера и разработчика распределенных приложений: от расширения поддержки ANSI SQL до профилирования UDF на Python. Главные изменения Apache Spark 3.3.0 Apache Spark 3.3.0 — это четвертый релиз линейки 3.x, в...
В рамках продвижения нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня рассмотрим, что такое связность в графе, зачем вычислять компоненты связности и как это сделать для ориентированных графов. Продемонстрируем все вычисления с помощью методов Python-библиотеки Networkx в Google Colab. Основы теории графов и применения Networkx в Google...
В этой статье для обучения дата-инженеров рассмотрим практическое применение 2-х важных принципов обработки данных: атомарность и идемпотентность задач в Apache Airflow. Читайте далее, как применить их к своим ETL-конвейерам, чтобы получить корректные и согласованные результаты. Все или ничего: атомарность задач Будучи популярным инструментом дата-инженерии, Apache Airflow снижает порог входа в...
Как писать UDF-функции Greenplum на Python: краткий обзор расширения PL/Python для дата-инженера и разработчика распределенных приложений. Как его установить, настроить и использовать: сопоставления типов данных, SQL-запросы, модули и функции. Поддержка Python в MPP-СУБД Поскольку освоить Python намного проще других языков программирования, например, Java или C#, неудивительно, что он сегодня очень...
Что не так с традиционными методами и инструментами разработки ПО для систем машинного обучения и как MLOps решает эти инженерные проблемы ML. Почему не стоит размещать файлы моделей Machine Learnig и датасеты в Git, а также зачем MLOps-инженеру решать вопросы архитектуры и управляться с Kubernetes. MLOps вместо Git-репозиториев Традиционные рабочие...
Весна богата на новые релизы: в начале мая 2022 года вышел Apache Flink 1.15. Рассказываем, что нового в свежем выпуске: краткий обзор самых полезных фич для разработчика распределенных приложений, а также интересные изменения, исправления ошибок и улучшения для дата-инженера. Scala под капотом и спецификация REST API по стандарту OpenAPI Apache...
30 апреля 2022 года вышел новый релиз Apache Airflow, который содержит более 700 коммитов с предыдущей версии 2.2.0 и включает 50 новых функций, 99 улучшений, 85 исправлений ошибок и несколько изменений в документации. Разбираемся, что особенно важно для дата-инженера в Apache Airflow 2.3.0. ТОП-7 главных фич Apache AirFlow 2.3.0: краткий...
Специально для обучения начинающих аналитиков данных и дата-инженеров сегодня рассмотрим примеры выполнения простых SQL-запросов и оконных функций в Apache Spark на Google Colab. Как быстро проанализировать датафрейм из CSV-файлов с помощью нескольких строк на PySpark. Запуск и использование PySpark в Google Colab Предположим, необходимо определить потенциальный доход от проведения обучающих...
Интеграция Apache Airflow с инструментами CI/CD является одной из лучших практик современной дата-инженерии, о чем мы недавно писали. Читайте далее, зачем нужно управлять кодом DAG с помощью популярных систем управления версиями и как это сделать на примере GitLab CI/CD. Сложности управления DAG в разных средах AirFlow Apache Airflow считается наиболее...