3 метода управления разделами в Apache Spark

Мы уже рассказывали про функции перераспределения данных по разделам coalesce() и repartition(). Сегодня сравним их работу с еще одним методом управления разделами в Apache Spark и разберем, как все они могут помочь дата-инженеру и разработчику распределенных приложений повысить эффективность этого популярного фреймворка аналитики больших данных. Отобрать и поделить: лучшие практики партиционирования данных...

Тонкости SparkSession в Apache Spark Structured Streaming

Может ли быть несколько сеансов в одном Spark-приложении с разной конфигурацией, зачем нужен метод foreachBatch() в структурированной потоковой передаче и чем он отличается от foreach(), почему возникает ошибка Table or view not found: microBatch и как ее обойти. В рамках обучения разработчиков Apache Spark и дата-инженеров заглядываем под капот этого...

Широковещательное соединение в Apache Spark SQL: ликбез и примеры

В этой статье для дата-инженеров и аналитиков данных, рассмотрим, что такое широковещательные соединение в Apache Spark SQL, чем оно полезно и как работает на практических примерах. BROADCAST JOIN в SELECT-запросах Spark SQL, а также краткий ликбез по подсказкам или хинтам. Что такое широковещательное соединение в Apache Spark SQL Распределенная природа...

Ускорение PySpark-приложений с PyArrow: лайфхаки Apache Spark для разработчиков

В рамках обучения разработчиков Spark-приложений и дата-инженеров, сегодня рассмотрим, как повысить эффективность выполнения Python-кода с помощью кросс-языковой платформы Apache Arrow. Что такое PyArrow и как это улучшает производительность PySpark-программ. Почему Spark Java быстрее PySpark и как это исправить с Apache Arrow Будучи популярным вычислительным движком в области Big Data, Apache...

MLOps на коленке: простое развертывание ML-модели с Apache Spark

Постоянно добавляя в наши курсы по Apache Spark и машинному обучению практические примеры для эффективного повышения квалификации Data Scientist’ов и инженеров данных, сегодня рассмотрим задачу пакетного прогнозирования и планирование ее запуска по расписанию без применения масштабных MLOps-решений. Apache Spark для пакетного прогнозирования Есть много готовых решений и инструментов для пакетного...

MLOps и переносимость ML-моделей с помощью ONNX и Apache Spark

Обучая специалистов по Data Science, аналитиков и инженеров данных лучшим практикам MLOps, сегодня поговорим про переносимость моделей машинного обучения между разными этапами жизненного цикла ML-систем, от разработки до развертывания в production. А в качестве примера разберем, как использовать обученную ML-модель из Apache Spark за пределами кластера, упаковав ее в ONNX...

Аналитика больших данных в реальном времени с Apache Kafka, Spark, ClickHouse и S3

Практический пример аналитики больших данных в реальном времени с Apache Spark, Kafka, ClickHouse и AWS S3: возможности, архитектура, также специально для дата-инженеров и разработчиков распределенных приложений рассмотрим, сколько времени нужно для разрешения каждого вызова API в определенном временном диапазоне. Анализ событий пользовательского поведения в реальном времени Основным продуктом международной ИТ-компании...

Аналитика больших данных с Apache Spark: UDF на Pyspark для вызова внешних REST API

Сегодня рассмотрим, как загружать большие объемы данных из REST API-сервисов с Apache Spark, написав на PySpark собственную UDF-функцию с преобразованием withColumn(), чтобы воспользоваться всеми преимуществами распределенных вычислений этого фреймворка. Локальное исполнение на драйвере и распараллеливание REST-API вызовов в Apache Spark Мы уже рассказывали, что конвертация Python-скрипта в распределенный код Apache...

Анализ данных временных рядов с Apache Spark: пара примеров c Flint и Pandas

В этой статье для дата-инженеров и аналитиков рассмотрим пример мониторинга состояния электрогенераторов с помощью анализа данных временных рядов и ранжирования в pandas для предупреждения выхода оборудования из строя. А также разберем основы анализа временных рядов на больших данных с открытой библиотекой Flint для Apache Spark. Постановка задачи: температура и производительность...

От AWS EMR к Apache Spark 3 на Kubernetes в маркетплейсе Joom

Развивая наши курсы по Apache Spark и AirFlow для дата-инженеров и администраторов кластеров, сегодня рассмотрим кейс крупного маркетплейса Joom по переходу от 2-ой версии фреймворка на облачной платформе EMR к развертыванию сотен распределенных заданий на 3-ей версии в Amazon Elastic Kubernetes Service. Про сокращение расходов, повышение производительности и апдейт вычислительных движков. Постановка...

Поиск по сайту