В этой статье для дата-инженеров и ИТ-архитекторов поговорим про шардирование баз данных и разберем, как этот способ горизонтального масштабирования системы реализуется в MPP-СУБД Greenplum, при чем здесь ключ дистрибуции и как его задать. Что такое шардирование БД и как оно работает Чтобы повысить производительность приложения через увеличение пропускной способности СУБД...
Сегодня поговорим про основные программные компоненты и принципы работы Apache AirFlow: как DAG состоит из задач, в чем разница между операторами и датчиками, зачем нужны правила триггеров, а также каким образом фреймворк защищает переменные. DAG и задачи: зависимости, состояния, триггеры Основной концепцией Apache AirFlow является DAG – направленный ациклический граф,...
Чтобы добавить в наши курсы по аналитики больших данных еще больше практически примеров, сегодня рассмотрим, как современные технологий Big Data помогают в реальном времени выявлять телекоммуникационные мошенничества. Почему для антифрод-задач особенно подходит Apache Flink с его потоковом движком обработки данных и за счет чего этот фреймворк такой быстрый. Антифрод в...
В этой статье для обучения ИТ-архитекторов и дата-инженеров сравним 2 подхода к аналитике больших данных, чтобы решить, когда потоковые вычисления, например, средствами ksqlDB в рамках Apache Kafka лучше аналитических баз данных реального времени, таких как Rockset, и наоборот. 2 способа выполнения аналитики больших данных в реальном времени Современный бизнес и...
Недавно мы писали про чтение данных из AWS S3 с помощью PySpark-задний. Продолжая разбираться, как перейти от HDFS к облачным объектным хранилищам, сегодня рассмотрим пример чтения и записи файлов из Google Cloud Storage с помощью Apache Spark. От HDFS к GCS Распределенная файловая система Apache Hadoop (HDFS) уже много лет...
Сегодня заглянем под капот Apache Kafka и рассмотрим, как на программном уровне работает упаковка сообщений от приложения-продюсера в пакеты перед их отправкой в топик платформы. Что такое RecordAccumulator, какие конфигурации с ним связаны и почему такое пакетирование обеспечивает эффективность потоковой обработки данных. Как устроено пакетирование потоковой обработки в Apache Kafka...
Чтобы сделать наши курсы для DevOps-инженеров и специалистов по Machine Learning еще более полезными, сегодня рассмотрим, как автоматизировать развертывание и обслуживание ML-моделей согласно концепции MLOps с помощью GitLab CI/CD, BentoML, Yatai, MLflow и Kubeflow. BentoML для CI в MLOPS При развертывании ML-модели необходимо учитывать следующие аспекты: как была построена модель...
16 ноября 2022 года вышел 2-ой альфа-релиз Apache Hive 4.0.0. Какие ошибки в нем исправлены и что за новые функции, важные для дата-инженера и администратора кластера Hadoop, появились. А перед этим вспомним основные принципы работы Apache Hive. Принципы работы Apache Hive Apache Hive является популярным инструментом стека SQL-on-Hadoop, позволяя обращаться...
Сегодня поговорим про качество данных и разберем, что такое Soda Core, как эта платформа позволяет выявлять отсутствующие значения, дубликаты, изменения схемы и проверку актуальности. А также рассмотрим, каким образом это совместимо с Apache AirFlow и что еще есть в самом популярном ETL-планировщике для обеспечения качества и надежности данных. Качество данных...
Мы уже разбирали некоторые советы оптимизации Flink-приложений, связанные с неравномерным распределением данных по вычислительным узлам. Сегодня рассмотрим, как при этом пригодится паттерн MapReduce Combiner, который часто используется в экосистеме Apache Hadoop и вместо него лучше применить Bundle оператор, доступный с версии Flink 1.15. Проблема неравномерного распределения в Big Data вообще...
Недавно мы писали про новинки сентябрьского и октябрьского релизов Greenplum 6.22, а 18 ноября 2022 года вышла новая отладочная версия, которая решает некоторые проблемы с сервером СУБД, обработкой запросов и потоком данных. Разбираемся, что стало лучше в VMware Tanzu Greenplum 6.22.2 с точки зрения администратора кластера и дата-инженера. Новинки и...
Когда и зачем переходить от пакетной парадигмы обработки к потоковой, как это сделать с помощью микросервисной архитектуры, какие проблемы могут при этом возникнуть и что за решения позволят их избежать. А в качестве примеров инструментальных средств рассмотрим сервисы AWS, Apache AirFlow и Kafka. От пакетов к потокам через микросервисы: архитектура...
Визуализация конвейеров обработки данных особенно важна в потоковой парадигме, поэтому мы часто рассматриваем полезные средства мониторинга для Apache Kafka. Сегодня разберем, что такое Streams Explorer от Bakdata и как это пригодится для дата-инженера. Проекты Bakdata для развертывания и мониторинга приложений Kafka Streams При работе с крупномасштабными потоковыми данными крайне важно...
Чтобы сделать наши курсы по Apache Spark для дата-инженеров еще более полезными, сегодня рассмотрим, как PySpark-задания могут считывать данные из корзин объектного хранилища AWS S3, используя Python-пакет boto3. Читайте далее, что представляет собой этот SDK, как использовать его вместе с IAM-ролями, а также как обеспечить безопасность конфиденциальных данных с помощью...
Мы уже сравнивали MLflow и Kubeflow, которые позволяют управлять конвейерами машинного обучения. Продолжая эту важную для ML-инженера тему, сегодня рассмотрим 2 других MLOps-инструмента для оркестрации конвейеров Machine Learning: Vertex AI Pipelines и Apache AirFlow. Что такое Vertex AI Pipelines от Google Поскольку цель концепции MLOps в том, чтобы объединить разработку...
Поиск данных по нескольким таблицам в реляционных базах данных реализуется через SQL-запрос с оператором JOIN. В NoSQL-хранилищах такая возможность может отсутствовать. Разбираем, как соединить таблицы в Apache HBase и причем здесь MapReduce. Варианты реализации JOIN в Apache HBase Будучи популярной NoSQL-базой, которая реализует возможности Google BigTable для Apache Hadoop, HBase...
19 сентября 2022 года вышел очередной релиз Apache AirFlow, а через пару недель выпущены его минорные обновления. Что нового в выпуске 2.4, чем полезен новый класс Dataset, что такое наборы данных, какие триггеры позволят запускать задачи и DAG в стиле cron-соглашений, зачем убрали интеллектуальные датчики и другие важные фичи, исправления...
Что не так с конвейерной моделью обработки данных и почему архитектура Data Mesh с потоковой передачей событий не решают всех проблем пакетной парадигмы. Зачем нужна новая архитектура данных под названием Мю, какие инструменты и принципы она использует для устранения технологической неоднородности отдельных технологий Big Data, а также при чем здесь...
В этой статье для обучения дата-инженеров и администраторов кластера Apache Kafka разберем, какие ошибки создают медленные потребители и как решить их, просто изменив значений конфигураций по умолчанию. А также познакомимся с Lighthouse - еще одним полезным инструментом мониторинга системных метрик, который позволит обнаружить эти и другие проблемы. Проблема медленных потребителей...
Сегодня рассмотрим, зачем нужно внешнее хранилище метаданных для Apache Hive, и как запустить его высокодоступный и масштабируемый сервис в Amazon EKS путем контейнеризации приложения. Зачем нужно внешнее хранилище метаданных Apache Hive? Apache Hive используется для доступа к данным, хранящимся в распределенной файловой системе Hadoop (HDFS) через стандартные SQL-запросы. Это NoSQL-хранилище...