Как найти зависший процесс в базе данных Greenplum, создать резервную копию каталога, разделить лог-файл по тестам и проверить его на наличие повреждений. Знакомимся с набором утилит gpsupport. 6 инструментов утилиты gpsupport для техподдержки Greenplum Как и любая крупная система Greenplum, помимо компонентов, обеспечивающих ее ключевые функции, также включает дополнительные инструменты,...
Как с помощью Flink SQL организовать потоковую агрегацию данных из таблицы PostgreSQL: знакомство с API таблиц в Ververica Cloud на практическом примере. API таблиц Ververica Cloud: создаем внешние источники и приемники данных Как я недавно рассказывала, немецкая фирма Ververica создала высокопроизводительный облачный сервис для обработки данных в реальном времени на...
Создаем визуализации Cypher-запросов к своему графу в графовой базе данных Neo4j с помощью дэшборда NeoDash на примере анализа финансовых транзакций в банке. Python-генерация графа в Neo4j с фейковыми данными Поскольку NoSQL-СУБД Neo4j отлично подходит для задач графовой аналитики больших данных благодаря своей нативно графовой модели хранения данных, ее можно использовать...
Сегодня я покажу, как проверить доступность веб-сайта с помощью http-хука в Apache AirFlow и отправить результаты проверки в Телеграм-бот. Еще раз про хуки и соединения Apache AirFlow Доступность системы является ключевым свойством информационной безопасности. Проверить, что веб-сервис доступен, можно по статусу HTTP-ответа на GET-запрос. Чтобы делать такую проверку периодически, т.е....
Что такое WSL, Docker и как запустить веб-сервер Apache AirFlow в контейнере на локальной машине в Ubuntu поверх Windows вместо любимого Google Colab. Пошаговое руководство для начинающих дата-инженеров. Краткий ликбез по WSL и Docker для любителей Windows Обычно я всегда запускала веб-сервер Apache AirFlow в интерактивной среде Google Colab, которая...
Недавно я писала, как с помощью source-коннектора Debezium организовать потоковый захват изменения данных из таблицы PostgreSQL путем публикации CDC-событий в Apache Kafka. Продолжая эту тему, сегодня покажу пример визуализации аналитики этих данных в Kibana, предварительно загрузив их в Elasticsearch с sink-коннектором Aiven. Постановка задачи и проектирование конвейера Как обычно, в...
Сегодня я покажу пример использования реестра схем для Apache Kafka на платформе Upstash, API которого полностью совместим со Schema Registry от Confluent. Пишем продюсер на Python, используя библиотеку confluent_kafka. Еще раз о том, что такое реестр схем Kafka и чем он полезен Реестр схем (Schema Registry) – это модуль Confluent...
Когда журналирование событий может привести к OOM-ошибке, где отслеживать системные метрики приложения Apache Spark, зачем сжимать лог-файлы и как это сделать. Логирование системных метрик в приложении Apache Spark Поскольку фреймворк Apache Spark изначально предназначен для создания высоконагруженных распределенных приложений пакетной и потоковой обработки больших объемов данных, он позволяет отслеживать системные...
Зачем Databricks выпустил Arc, чем это отличается от Splink, и как эти инструменты позволяют решать проблему связывания данных с помощью алгоритмов машинного обучения. Как работает связывание данных Продолжая разговор про качество данных и разрешение сущностей (entity resolution) , сегодня подробно рассмотрим этап связывания записей с использованием логики на основе правил...
Как качество данных связано с разрешением сущностей, чем entity resolution отличается от identity resolution, зачем нужны графы идентичности, как их построить и где использовать. Борьба за качество данных с entity resolution Результаты аналитической обработки данных напрямую зависят от их качества, о ключевых показателях и задачах обеспечения которого мы писали здесь....
Чем пакетная парадигма обработки данных отличается от пакетной и как она реализуется на практике: принципы работы и воплощение в Big Data на примере Apache Spark, Kafka и Flink. Еще раз о разнице потоковой и пакетной парадигмы обработки данных Пакетная обработка и потоковая обработка — это две разные парадигмы обработки данных....
Зачем ограничивать доступ к папке с DAG и как это сделать: категории и роли пользователей в Apache AirFlow, способы входа в систему и конфигурации для настройки прав. Категории и роли пользователей Apache AirFlow Поскольку основным источником угрозы почти для любой информационной системы являются люди, при разработке методов обеспечения безопасности надо,...
Как работает планировщик заданий в Apache Flink, чем разные реализации Scheduler отличаются друг от друга, и каковы преимущества адаптивных планировщиков. Как Apache Flink планирует выполнение заданий клиентской программы Архитектура Apache Flink, которую мы рассматривали здесь, включает несколько компонентов. Одним из них является планировщик заданий, которые отправляются клиентским приложением в диспетчер...
Что такое Controller Service в Apache NiFi и как дата-инженеру создать собственный набор настроек для совместного и повторного использования в потоковом конвейере обработки данных. Что такое Controller Service в Apache NiFi Apache NiFi реализует потоковую парадигму обработки информации, выполняя ETL-операции над FlowFile с помощью обработчиков, называемыми процессорами. Если какие-то процессоры...
Что такое Ververica Runtime Assembly, чем GeminiStateBackend лучше RocksDB и еще несколько отличий коммерческого облачного решения от открытого Apache Flink. Что такое Ververica Cloud и при чем здесь Apache Flink Технологии с открытым исходным кодом развиваются намного быстрее при поддержке крупных корпораций. Например, компания Confluent продвигает Apache Kafka, Astronomer –...
Что означает термин backpressure и зачем создавать обратное давление в streaming-системах: разбираемся с методами управления пропускной способностью потоковой передачи событий на примере Apache Kafka, Flink, Spark и NiFi. Что такое обратное давление: backpressure в конвейерах потоковой обработки данных Понять, как работает сложная концепция, проще всего на простых примерах. Это общее...
Завершая цикл статей про мультирегиональную репликацию кластеров Apache Kafka, сегодня поговорим про стратегии развертывания топологий, предлагаемых компанией Confluent. Принципы архитектуры, сравнение, сценарии, критерии выбора. Критерии выбора топологии репликации кластера Apache Kafka Для повышения надежности и производительность потоковой обработки данных с использованием Apache Kafka кластера этой платформы рекомендуется располагать в разных...
Сегодня я покажу на практическом примере, как реализовать потоковый захват изменения данных из таблицы PostgreSQL и их репликацию в Apache Kafka с помощью Debezium. Создаем и настраиваем свой коннектор на платформе Upstash. Постановка задачи Паттерн захвата измененных данных (CDC, Change Data Capture) является одним из самых распространенных в инженерии данных....
Продолжая разговор про межрегиональную репликацию Apache Kafka, сегодня рассмотрим 4 способа ее реализации: мультирегиональный кластер, MirrorMaker 2, Cluster Linking в Confluent Server и Confluent Replicator. Чем георепликация Kafka с MirrorMaker 2 отличается от решений Confluent и что выбирать для различных сценариев. Мультирегиональный кластер Confluent Геораспределенная репликация реплицирует данные по кластерам...
Недавно мы писали про мультирегиональную репликацию Apache Kafka. Сегодня рассмотрим, как выполнить геораспределенную репликацию с помощью Cluster Linking в Confluent Server и Kafka Connect с Confluent Replicator. Cluster Linking для Apache Kafka Связанные кластеры представляют собой 2 или более кластера в разных географических регионах. В отличие от топологии растянутого кластера,...