Мы уже писали про особенности тестирования систем машинного обучения. Чтобы не повторяться, сегодня рассмотрим фреймворки для реализации идей MLOps, а также рассмотрим, какие тесты должны быть пройдены для проверки работоспособности ML-продукта. 3 категории тестов для ML-систем Согласно концепции MLOps, полный конвейер разработки включает в себя три основных компонента: конвейер данных,...
Что не так с большими языковыми моделями, как RAG-приложения расширяют возможности LLM и зачем в графовой СУБД Neo4j добавлена поддержка векторного индекса. Зачем нужны RAG-приложения: ограничения базовых LLM-сетей С появлением ChatGPT и других генеративных нейросетей, большие языковые модели (LLM, Large Language Models) стали активно применяться для решения множества бизнес-задач, связанных...
Зачем разработчики MLflow внедрили в этот MLOps-фреймворк инструмент оптимизации использования и управления различными провайдерами больших языковых моделей, чем он полезен и как использовать AI Gateway от Databricks. Что такое MLflow AI Gateway и зачем это нужно Напомним, MLflow от Databricks представляет собой платформу с открытым исходным кодом, которая помогает управлять...
Как получать результаты обработки данных с помощью Apache Spark, адресуя ИИ бизнес-запросы на английском языке: знакомимся с English SDK от Databricks. Настоящий Low Code с PySpark-AI. English SDK for Apache Spark и PySpark-AI: как это работает Большие языковые модели (LLM, Large Language Model), основанные на генеративных нейросетях, применимы не только...
Как внедрить ключевые идеи MLOps и определиться с набором инструментов для непрерывной разработки и поставки систем машинного обучения. Лучшие практики и шаблон представления техстека. С чего начать: определение структуры проекта Напомним, концепция MLOps ориентирована на устранение организационных и технических разрывов между разнопрофильными участниками процессов создания систем машинного обучения. Когда речь...
Что представляет собой межотраслевой стандартный процесс машинного обучения CRISP-ML(Q), из каких этапов и задач он состоит, а также как согласуется с концепцией MLOps. Что такое CRISP-ML(Q) и при чем здесь MLOps Стандартизация подходов и процессов позволяет унифицировать и масштабировать лучшие практики управления исследованиями и разработкой, в т.ч. распространяя их на...
Как устроены векторные базы данных и почему они стали так популярны с распространением ИИ. Архитектура, алгоритмы, принципы работы и примеры векторных СУБД. Что такое векторная СУБД и при чем здесь ИИ Как и следует из названия, векторная база хранит данные в виде векторов. Это понятие из математики означает специализированное представление...
Из чего состоит инфраструктура глубокого обучения Databricks и как масштабировать Deep Learning для нескольких графических процессоров или распределенных вычислений. Знакомимся с очередным MLOps-инструментом под названием Horovod. Что Horovod и как его использовать в Databricks Мы уже писали, почему глубокому обучению не обойтись без MLOps-инструментов, реализующих идеи DevOps для автоматизации разработки,...
Сегодня познакомимся с набором инструментов TAO Toolkit от NVIDIA на основе TensorFlow и PyTorch, который позволяет получить эффективный рабочий процесс с помощью лучших практик MLOps и возможностей трансферного обучения за счет оптимизации тренировки модели и ее пропускной способности для логического вывода на целевой платформе. Что такое TAO Toolkit от NVIDIA...
Мы уже писали, какие инструменты пригодятся MLOps-инженеру для развертывания моделей машинного обучения в производственных средах. Сегодня рассмотрим, как сделать это, используя MLOps-паттерны и средства платформы Databricks Lakehouse. MLOps в production: шаблоны развертывания на платформе Databricks MLOps представляет собой набор лучших практик и инструментов для автоматизации управления кодом, данными и моделями,...