Как ваше состояние: запуск stateful-приложений Apache Kafka Streams в Kubernetes

Сегодня рассмотрим особенности запуска приложений Apache Kafka Streams для потоковой обработки больших данных с отслеживанием состояния в кластере Kubernetes. Читайте далее, в чем проблема управления stateful-приложениями Kafka Streams в Kubernetes и как ее решает контроллер StatefulSet. Что обеспечивает хранение состояний в Apache Kafka Streams Напомним, Kafka Streams – это легковесная...

CDC-репликация Big Data в реальном времени с Apache Kafka и Debezium в Confluent Cloud

В этой статье поговорим про интеграцию данных с помощью CDC-подхода и репликацию SQL-таблиц из корпоративной СУБД в несколько разных удаленных хранилищ в реальном времени с применением Apache Kafka и Debezium, развернутых в Kafka Connect и Confluent Cloud. Постановка задачи: CDC с Big Data в реальном времени Рассмотрим кейс, который часто...

А вы любите Kafka? Открытый тест из 10 вопросов на знание популярной Big Data платформы

Чтобы сделать ваше самостоятельное обучение Apache Kafka и прочим технологиям Big Data по статьям нашего блога еще более интересным, сегодня мы предлагаем вам открытый интерактивный тест по этой платформе потоковой обработки событий. Ответьте на 10 простых вопросов и узнайте, насколько хорошо вы знакомы с особенностями администрирования и эксплуатации этого популярного...

Непростая аналитика больших данных в реальном времени: 3 способа перезапуска заданий Spark Structured Streaming по метке времени Apache Kafka

Совместное использование Apache Kafka и Spark очень часто встречается в потоковой аналитике больших данных, например, в прогнозировании пользовательского поведения, о чем мы рассказывали вчера. Однако, временные метки (timestamp) в приложении Spark Structured Streaming могут отличаться от времени события в топике Kafka. Читайте далее, почему это случается и какие подходы к...

Как подготовить датасет к Machine Learning с PySpark и построить систему потоковой аналитики больших данных на Apache Kafka и ELK: пример прогнозирования CTR

В продолжение разговора о применении технологий Big Data и Machine Learning в рекламе и маркетинге, сегодня рассмотрим архитектуру системы прогнозирования конверсии рекламных объявлений. Читайте далее, как организовать предиктивную аналитику больших данных на Apache Kafka и компонентах ELK-стека (Elasticsearch, Logstash, Kibana), почему так важно тщательно подготовить данные к машинному обучению, какие...

Ускоряем и масштабируем Apache Spark Structured Streaming: 2 проблемы строго однократной доставки и их решения

Вчера мы говорили про реализацию exactly once семантики доставки сообщений в Apache Spark Structured Streaming. Сегодня рассмотрим, что не так с размером компактных файлов для хранения контрольных точек потоковой передачи, какие параметры конфигурации Spark SQL отвечают за такое логирование и как ускорить микро-пакетную обработку больших данных и чтение результатов выполнения...

10 вопросов на знание основ Big Data: открытый интерактивный тест для начинающих

Чтобы сделать самостоятельное обучение технологиям Big Data по статьям нашего блога еще более интересным, сегодня мы предлагаем вам простой интерактивный тест по основам больших данных, включая администрирование кластеров, инженерию конвейеров и архитектуру, а также Data Science и Machine Learning.   Тест по основам больших данных для новичков В продолжение темы,...

Потоковая обработка событий в Machine Learning и Big Data: основы StreamSQL для начинающих

Вчера мы говорили про промышленный Machine Learning в больших данных и рассматривали проблемы микросервисной архитектуры в системах машинного обучения. Продолжая разбирать, как Feature Store повышает эффективность MLOps-процессов, сокращая цикл разработки согласно Agile-идеям, сегодня мы приготовили для вас краткий обзор хранилища признаков StreamSQL. Читайте далее, что такое StreamSQL, как оно устроено,...

Зачем вам Feature Store или что не так с микросервисами в ML-системах

Сегодня рассмотрим, когда микросервисные архитектуры не подходят для систем машинного обучения и какие технологии Big Data следует использовать в этом случае. В этой статье мы расскажем, что такое Feature Store, как это хранилище признаков для моделей Machine Learning повышает эффективность MLOps-процессов и сокращает цикл разработки ML-систем, а также при чем...

5 советов по потоковой аналитике больших данных с Apache Kafka и Spark Streaming

В продолжение вчерашнего материала про потоковую аналитику больших данных с Apache Kafka и Spark, сегодня рассмотрим особенности совместного использования этих технологий Big Data. В этой статье мы собрали для вас 5 лучших практик эффективного применения Apache Kafka и Spark Streaming для разработки распределенных приложений аналитики больших данных в режиме реального...

Как построить ML-pipeline на Qlik Replicate, Apache Kafka и других технологиях Big Data: архитектура real-time аналитики больших данных

Сегодня поговорим про ETL-процессы в мире Big Data на примере построения непрерывного конвейера поставки больших данных о транзакциях для сервисов машинного обучения. Читайте далее, из чего состоит типичная архитектура такой системы на базе Apache Kafka, Spark, HBase и Hive, а также почему большинство ETL-инструментов не подходят для потоковой передачи событий...

Apache Kafka и прочая Big Data для железнодорожников: кейс Deutsche Bahn

Чтобы добавить в наш новый курс по Apache Kafka для разработчиков еще больше практических примеров, сегодня мы приготовили для вас кейс немецкой железнодорожной компании Deutsche Bahn AG. Читайте далее, почему приложения Kafka Streams заменили Apache Storm и как крупнейшая транспортная компания Германии построила собственную информационную платформу на базе Apache Kafka,...

Что такое GraphQL и как это использовать в разработке приложений Apache Kafka

В рамках продвижения нашего нового курса Apache Kafka для разработчиков недавно мы рассматривали RESTful API к этой Big Data платформе потоковой обработки событий на примере Confluent REST Proxy. Сегодня разберем альтернативу REST-интерфейсам в виде GraphQL и применимости этой технологии к разработке распределенных Kafka-приложений. Что такое GraphQL и чем он лучше...

Чем хорош REST Proxy для Apache Kafka и что с ним не так: ключевые достоинства и недостатки RESTful API от Confluent

Продолжая разбираться с Confluent REST Proxy для Apache Kafka, сегодня рассмотрим основные достоинства и недостатки этого RESTful API. Читайте далее, что Confluent REST Proxy позволяет делать с Apache Kafka и что ограничивает его взаимодействие с самой популярной Big Data платформой потоковой обработки событий.   6 главных преимуществ RESTful API к...

Что такое REST Proxy к Apache Kafka: разбираемся с RESTful API от Confluent

В этой статье разберем, что такое Confluent REST Proxy для Apache Kafka, как работает этот RESTful API, каким образом он связан с облачным сервисом этой популярной Big Data платформой потоковой обработки событий, а также при чем здесь Schema Registry. Основы Confluent REST Proxy для Apache Kafka Широко известная в области...

Как удаленному сервису достучаться к Apache Kafka по HTTP: REST API

Сегодня поговорим про обучение Apache Kafka и рассмотрим сценарии применения HTTP и RESTful протоколов в этой Big Data платформе потоковой обработки событий. Читайте далее, чем парадигма request-response отличается от event streaming processing, как связаны REST и HTTP, каковые преимущества RESTful API и где это используется на практике для обработки и...

От open-source до Confluent: 3 клиента Python для Apache Kafka

Развивая наш новый курс по Apache Kafka для разработчиков, сегодня мы рассмотрим 3 способа о взаимодействии с этой популярной Big Data платформой потоковой обработки событий с помощью языка Python, который считается самым распространенным инструментом в Data Science. Читайте далее, что такое librdkafka, чем PyKafka отличается от Kafka-Python и почему решение...

Как опередить спрос на модные новинки с облачными технологиями Big Data: кейс компании Boden по Apache Kafka и Snowflake

Интерактивная аналитика больших данных - одно из самых востребованных и коммерциализированных приложений для технологий Big Data. В этой статье мы рассмотрим, как крупный британский ритейлер запустил цифровую трансформацию своей ИТ-архитектуры, уходя от традиционного DWH с пакетной обработкой к событийно-стриминговой облачной платформе на базе Apache Kafka и Snowflake. Зачем модному ритейлеру...

DataOps и инженерия больших данных: 10 лучших практик от корпорации DNB

Чтобы добавить в наши курсы для дата-инженеров еще больше реальных примеров и лучших DataOps-практик, сегодня мы расскажем, как специалисты крупной норвежской компании DNB обеспечивают надежный доступ к чистым и точным массивам Big Data, применяя передовые методы проектирования данных и реализации конвейеров их обработки. В этой статье мы собрали для вас...

Как устроен конвейер аналитики больших данных на Apache Kafka и Druid в Netflix

В этой статье разберем, что такое прикладная аналитика больших данных на примере практического использования Apache Kafka и Druid в Netflix для обработки и визуализации метрик пользовательского поведения. Читайте далее, зачем самой популярной стриминговой компании отслеживать показатели клиентских устройств и как это реализуется с помощью Apache Druid, Kafka и других технологий...