Что не так с конвейерной моделью обработки данных и почему архитектура Data Mesh с потоковой передачей событий не решают всех проблем пакетной парадигмы. Зачем нужна новая архитектура данных под названием Мю, какие инструменты и принципы она использует для устранения технологической неоднородности отдельных технологий Big Data, а также при чем здесь...
В этой статье для обучения дата-инженеров и администраторов кластера Apache Kafka разберем, какие ошибки создают медленные потребители и как решить их, просто изменив значений конфигураций по умолчанию. А также познакомимся с Lighthouse - еще одним полезным инструментом мониторинга системных метрик, который позволит обнаружить эти и другие проблемы. Проблема медленных потребителей...
Чтобы сделать наши курсы по Apache Flink еще более полезными для дата-инженеров и разработчиков распределенных приложений потоковой аналитики больших данных, сегодня разберем, как работают источники данных потоковой обработки на примере топиков Kafka. Источники данных в Apache Flink Наряду с Apache Spark, Flink также является популярным фреймворком пакетной и потоковой обработки...
Недавно мы писали про сериализацию и десериализацию данных в Apache Kafka. Продолжая эту важную для обучения дата-инженеров и разработчиков распределенных приложений тему, рассмотрим особенности преобразования и валидации сообщений в JSON-формате, а также поговорим про автоматическую идентификацию формата сообщения. Сериализация и десериализация данных в Apache Kafka Выполняя роль интеграционной платформы, Apache...
Чтобы сделать наши практические курсы по Apache Kafka еще более полезными, сегодня рассмотрим, в каких файлах хранятся сообщения, смещения и состояния продюсера, а также функции работы с ними для потоковой передачи событий. Средства обработки и хранения данных в Apache Kafka Прежде, чем погружаться в тонкости хранения данных в Apache Kafka,...
Сегодня рассмотрим, как дата-инженеры маркетплейса Whatnot масштабировали потоковую обработку данных с помощью Apache Kafka, изменив свои ETL-процессы и реализовав на этой распределенной платформе шину событий для анализа пользовательского поведения c ksqlDB и Rockset. Постановка задачи: события пользовательского поведения в Whatnot Whatnot – это маркетплейс, пользователи которого могут покупать и продавать...
Как Apache Flink реализует строго однократную доставку событий в потовой обработке данных с помощью контрольных точек для записи данных в реляционную базу, используя функцию TwoPhasedCommitSink(), основанную на механизме согласованных snapshot’ов 35-летней давности и Kafka Transaction API. Трудности строго однократной доставки в потоковой обработке данных Распределенная обработка потоков с отслеживанием состояния...
Как турецкая e-commerce компания Trendyol повысила эффективность пакетных вычислений, используя распределенную платформу потоковой обработки событий Apache Kafka вместе с серверной утилитой сбора и фильтрации данных из разных источников Logstash. Пакетная обработка данных и конвейер на Logstash Хотя сегодня все больше организаций переходят на потоковую обработку событий в реальном времени, пакетная...
Чтобы добавить в наши курсы для администраторов кластера Apache Kafka и разработчиков распределенных приложений еще больше полезных обучающих материалов, сегодня рассмотрим новый инструмент мониторинга системных метрик этой платформы потоковой передачи событий. Что такое проект Iris и чем он отличается от других популярных средств мониторинга состояния Apache Kafka, о которых мы...
Мы уже писали о Python-клиентах Apache Kafka, которые позволяют разрабатывать приложения потоковой передачи события, используя популярный Python вместо сложных языков Java и Scala. Сегодня познакомимся с еще одной Python-библиотекой, которая представляет асинхронный клиент для Kafka. Что такое aiokafka и чем это отличается от kafka-python: краткий обзор для обучения инженеров данных...